Delahaye Nicolas F, Coltel Nicolas, Puthier Denis, Barbier Mathieu, Benech Philippe, Joly Florence, Iraqi Fuad A, Grau Georges E, Nguyen Catherine, Rihet Pascal
Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France.
BMC Genomics. 2007 Dec 6;8:452. doi: 10.1186/1471-2164-8-452.
Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R) and CM-susceptible (CM-S) mice, upon infection by Plasmodium berghei ANKA (PbA). We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays.
Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c), and in CM-S (CBA/J and C57BL/6) mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of beta-amyloid proteins in brains of CM-S mice, but not of CM-R mice.
Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.
微阵列分析能够识别和评估经历病理过程的全组织中的分子特征。为了更好地理解脑型疟疾的发病机制,我们研究了在感染伯氏疟原虫ANKA(PbA)后,基因明确的抗脑型疟疾(CM-R)和易感脑型疟疾(CM-S)小鼠的脑内基因表达谱。我们使用cDNA微阵列研究了感染早期和晚期小鼠的转录反应。
通过采用经过多重检验校正的严格统计方法,我们发现PbA显著改变了CM-R(BALB/c)、CM-S(CBA/J和C57BL/6)小鼠的脑基因表达,并且有327个基因在感染的早期和晚期、小鼠品系之间以及CM-R和CM-S小鼠之间存在差异。我们进一步分别鉴定出在感染第2天、第5天和第7天,CM-R和CM-S小鼠之间有104、56、84个基因存在显著差异表达。对其功能注释的分析表明,参与代谢能量途径、炎症反应以及神经保护/神经毒性平衡的基因在脑型疟疾发病机制中起主要作用。此外,我们的数据表明脑型疟疾和阿尔茨海默病可能共享一些共同的发病机制,如CM-S小鼠脑内β-淀粉样蛋白的积累,但CM-R小鼠脑内则没有。
我们的微阵列分析突出了与CM-R小鼠相比,CM-S小鼠在几个分子途径中存在显著变化,特别是在感染早期。这项研究揭示了一些有前景的探索领域,可能为脑型疟疾发病机制的认识和新治疗策略的开发提供新的见解。