Zdebik Anselm A, Zifarelli Giovanni, Bergsdorf Eun-Yeong, Soliani Paolo, Scheel Olaf, Jentsch Thomas J, Pusch Michael
Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.
J Biol Chem. 2008 Feb 15;283(7):4219-27. doi: 10.1074/jbc.M708368200. Epub 2007 Dec 6.
Many proteins of the CLC gene family are Cl(-) channels, whereas others, like the bacterial ecClC-1 or mammalian ClC-4 and -5, mediate Cl(-)/H(+) exchange. Mutating a "gating glutamate" (Glu-224 in ClC-4 and Glu-211 in ClC-5) converted these exchangers into anion conductances, as did the neutralization of another, intracellular "proton glutamate" in ecClC-1. We show here that neutralizing the proton glutamate of ClC-4 (Glu-281) and ClC-5 (Glu-268), but not replacing it with aspartate, histidine, or tyrosine, rather abolished Cl(-) and H(+) transport. Surface expression was unchanged by these mutations. Uncoupled Cl(-) transport could be restored in the ClC-4(E281A) and ClC-5(E268A) proton glutamate mutations by additionally neutralizing the gating glutamates, suggesting that wild type proteins transport anions only when protons are supplied through a cytoplasmic H(+) donor. Each monomeric unit of the dimeric protein was found to be able to carry out Cl(-)/H(+) exchange independently from the transport activity of the neighboring subunit. NO(3)(-) or SCN(-) transport was partially uncoupled from H(+) countertransport but still depended on the proton glutamate. Inserting proton glutamates into CLC channels altered their gating but failed to convert them into Cl(-)/H(+) exchangers. Noise analysis indicated that ClC-5 switches between silent and transporting states with an apparent unitary conductance of 0.5 picosiemens. Our results are consistent with the idea that Cl(-)/H(+) exchange of the endosomal ClC-4 and -5 proteins relies on proton delivery from an intracellular titratable residue at position 268 (numbering of ClC-5) and that the strong rectification of currents arises from the voltage-dependent proton transfer from Glu-268 to Glu-211.
CLC基因家族的许多蛋白质是氯离子通道,而其他一些蛋白质,如细菌的ecClC - 1或哺乳动物的ClC - 4和ClC - 5,则介导Cl⁻/H⁺交换。使“门控谷氨酸”(ClC - 4中的Glu - 224和ClC - 5中的Glu - 211)发生突变,可将这些交换体转变为阴离子电导,ecClC - 1中另一个细胞内“质子谷氨酸”的中和也有同样效果。我们在此表明,中和ClC - 4(Glu - 281)和ClC - 5(Glu - 268)的质子谷氨酸,但不将其替换为天冬氨酸、组氨酸或酪氨酸,反而会消除Cl⁻和H⁺的转运。这些突变并未改变表面表达。通过额外中和门控谷氨酸,可在ClC - 4(E281A)和ClC - 5(E268A)质子谷氨酸突变体中恢复未偶联的Cl⁻转运,这表明野生型蛋白仅在通过细胞质H⁺供体提供质子时才转运阴离子。发现二聚体蛋白的每个单体单元都能够独立于相邻亚基的转运活性进行Cl⁻/H⁺交换。NO₃⁻或SCN⁻的转运与H⁺反向转运部分解偶联,但仍依赖于质子谷氨酸。将质子谷氨酸插入CLC通道会改变其门控,但无法将其转变为Cl⁻/H⁺交换体。噪声分析表明,ClC - 5在沉默状态和转运状态之间切换,表观单通道电导为0.5皮西门子。我们的结果与以下观点一致:内体ClC - 4和ClC - 5蛋白的Cl⁻/H⁺交换依赖于来自268位(ClC - 5的编号)细胞内可滴定残基的质子传递,并且电流的强整流作用源于从Glu - 268到Glu - 211的电压依赖性质子转移。