Bekkal Brikci Fadia, Clairambault Jean, Ribba Benjamin, Perthame Benoît
Projet BANG, UR Rocquencourt, Institut de Recherche en Informatique et en Automatique, BP 105, Le Chesnay Cedex, 78150, France.
J Math Biol. 2008 Jul;57(1):91-110. doi: 10.1007/s00285-007-0147-x. Epub 2007 Dec 7.
We present a nonlinear model of the dynamics of a cell population divided into proliferative and quiescent compartments. The proliferative phase represents the complete cell cycle (G (1)-S-G (2)-M) of a population committed to divide at its end. The model is structured by the time spent by a cell in the proliferative phase, and by the amount of Cyclin D/(CDK4 or 6) complexes. Cells can transit from one compartment to the other, following transition rules which differ according to the tissue state: healthy or tumoral. The asymptotic behaviour of solutions of the nonlinear model is analysed in two cases, exhibiting tissue homeostasis or tumour exponential growth. The model is simulated and its analytic predictions are confirmed numerically.
我们提出了一个细胞群体动力学的非线性模型,该细胞群体分为增殖性和静止性区室。增殖期代表一个在末期致力于分裂的群体的完整细胞周期(G(1)-S-G(2)-M)。该模型由细胞在增殖期所花费的时间以及细胞周期蛋白D/(细胞周期蛋白依赖性激酶4或6)复合物的量构成。细胞可以根据不同的转换规则在两个区室之间转换,这些规则因组织状态(健康或肿瘤)而异。在两种情况下分析了非线性模型解的渐近行为,分别呈现出组织稳态或肿瘤指数增长。对该模型进行了模拟,并通过数值方法证实了其解析预测。