Suppr超能文献

针对具有二元结局的个体患者数据荟萃分析的分析方法比较。

A comparison of analytic approaches for individual patient data meta-analyses with binary outcomes.

作者信息

Thomas Doneal, Platt Robert, Benedetti Andrea

机构信息

Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada.

Department of Medicine, McGill University, Montreal, Canada.

出版信息

BMC Med Res Methodol. 2017 Feb 16;17(1):28. doi: 10.1186/s12874-017-0307-7.

Abstract

BACKGROUND

Individual patient data meta-analyses (IPD-MA) are often performed using a one-stage approach-- a form of generalized linear mixed model (GLMM) for binary outcomes. We compare (i) one-stage to two-stage approaches (ii) the performance of two estimation procedures (Penalized Quasi-likelihood-PQL and Adaptive Gaussian Hermite Quadrature-AGHQ) for GLMMs with binary outcomes within the one-stage approach and (iii) using stratified study-effect or random study-effects.

METHODS

We compare the different approaches via a simulation study, in terms of bias, mean-squared error (MSE), coverage and numerical convergence, of the pooled treatment effect (β ) and between-study heterogeneity of the treatment effect (τ ). We varied the prevalence of the outcome, sample size, number of studies and variances and correlation of the random effects.

RESULTS

The two-stage and one-stage methods produced approximately unbiased β estimates. PQL performed better than AGHQ for estimating τ with respect to MSE, but performed comparably with AGHQ in estimating the bias of β and of τ . The random study-effects model outperformed the stratified study-effects model in small size MA.

CONCLUSION

The one-stage approach is recommended over the two-stage method for small size MA. There was no meaningful difference between the PQL and AGHQ procedures. Though the random-intercept and stratified-intercept approaches can suffer from their underlining assumptions, fitting GLMM with a random-intercept are less prone to misfit and has good convergence rate.

摘要

背景

个体患者数据荟萃分析(IPD-MA)通常采用单阶段方法——一种用于二元结局的广义线性混合模型(GLMM)形式。我们比较了(i)单阶段与两阶段方法,(ii)在单阶段方法中用于二元结局GLMM的两种估计程序(惩罚拟似然法-PQL和自适应高斯埃尔米特求积法-AGHQ)的性能,以及(iii)使用分层研究效应或随机研究效应的情况。

方法

我们通过模拟研究比较不同方法,涉及合并治疗效应(β)的偏倚、均方误差(MSE)、覆盖率和数值收敛性,以及治疗效应的研究间异质性(τ)。我们改变了结局的患病率、样本量、研究数量以及随机效应的方差和相关性。

结果

两阶段和单阶段方法产生的β估计值大致无偏。在估计τ的MSE方面,PQL比AGHQ表现更好,但在估计β和τ的偏倚方面与AGHQ相当。在小样本量的荟萃分析中,随机研究效应模型优于分层研究效应模型。

结论

对于小样本量的荟萃分析,推荐使用单阶段方法而非两阶段方法。PQL和AGHQ程序之间没有显著差异。尽管随机截距和分层截距方法可能受其潜在假设的影响,但采用随机截距拟合GLMM不太容易出现拟合不佳的情况,且具有良好的收敛速度。

相似文献

1
A comparison of analytic approaches for individual patient data meta-analyses with binary outcomes.
BMC Med Res Methodol. 2017 Feb 16;17(1):28. doi: 10.1186/s12874-017-0307-7.
3
An evaluation of computational methods for aggregate data meta-analyses of diagnostic test accuracy studies.
BMC Med Res Methodol. 2024 May 10;24(1):111. doi: 10.1186/s12874-024-02217-2.
6
Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study.
BMC Med Res Methodol. 2018 Jul 4;18(1):70. doi: 10.1186/s12874-018-0531-9.
8
An assessment of estimation methods for generalized linear mixed models with binary outcomes.
Stat Med. 2013 Nov 20;32(26):4550-66. doi: 10.1002/sim.5866. Epub 2013 Jul 9.
9
A comparison of one-stage vs two-stage individual patient data meta-analysis methods: A simulation study.
Res Synth Methods. 2018 Sep;9(3):417-430. doi: 10.1002/jrsm.1303. Epub 2018 Jun 21.
10
Modelling spatial disease rates using maximum likelihood.
Stat Med. 2000;19(17-18):2321-32. doi: 10.1002/1097-0258(20000915/30)19:17/18<2321::aid-sim572>3.0.co;2-#.

引用本文的文献

1
An evaluation of computational methods for aggregate data meta-analyses of diagnostic test accuracy studies.
BMC Med Res Methodol. 2024 May 10;24(1):111. doi: 10.1186/s12874-024-02217-2.
4
A brief introduction of meta-analyses in clinical practice and research.
J Gene Med. 2021 May;23(5):e3312. doi: 10.1002/jgm.3312. Epub 2021 Mar 25.
8
A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio.
Stat Med. 2018 Mar 30;37(7):1059-1085. doi: 10.1002/sim.7588. Epub 2018 Jan 8.

本文引用的文献

1
Get real in individual participant data (IPD) meta-analysis: a review of the methodology.
Res Synth Methods. 2015 Dec;6(4):293-309. doi: 10.1002/jrsm.1160. Epub 2015 Aug 19.
2
Systematic review of methods for individual patient data meta- analysis with binary outcomes.
BMC Med Res Methodol. 2014 Jun 19;14:79. doi: 10.1186/1471-2288-14-79.
3
Random-effects meta-analysis of inconsistent effects: a time for change.
Ann Intern Med. 2014 Feb 18;160(4):267-70. doi: 10.7326/M13-2886.
6
An assessment of estimation methods for generalized linear mixed models with binary outcomes.
Stat Med. 2013 Nov 20;32(26):4550-66. doi: 10.1002/sim.5866. Epub 2013 Jul 9.
7
Individual participant data meta-analyses should not ignore clustering.
J Clin Epidemiol. 2013 Aug;66(8):865-873.e4. doi: 10.1016/j.jclinepi.2012.12.017. Epub 2013 May 4.
8
Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?
PLoS One. 2013 Apr 9;8(4):e60650. doi: 10.1371/journal.pone.0060650. Print 2013.
10
A method of moments estimator for random effect multivariate meta-analysis.
Biometrics. 2012 Dec;68(4):1278-84. doi: 10.1111/j.1541-0420.2012.01761.x. Epub 2012 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验