Suppr超能文献

单阶段个体参与者数据荟萃分析模型:治疗协变量相互作用的估计必须通过分离试验内和试验间信息来避免生态偏差。

One-stage individual participant data meta-analysis models: estimation of treatment-covariate interactions must avoid ecological bias by separating out within-trial and across-trial information.

作者信息

Hua Hairui, Burke Danielle L, Crowther Michael J, Ensor Joie, Tudur Smith Catrin, Riley Richard D

机构信息

Biostatistics & Data Sciences Asia, Boehringer Ingelheim, Shanghai, 200040, China.

Research Institute for Primary Care and Health Sciences, Keele University, Keele, Staffordshire, ST5 5BG, U.K.

出版信息

Stat Med. 2017 Feb 28;36(5):772-789. doi: 10.1002/sim.7171. Epub 2016 Dec 1.

Abstract

Stratified medicine utilizes individual-level covariates that are associated with a differential treatment effect, also known as treatment-covariate interactions. When multiple trials are available, meta-analysis is used to help detect true treatment-covariate interactions by combining their data. Meta-regression of trial-level information is prone to low power and ecological bias, and therefore, individual participant data (IPD) meta-analyses are preferable to examine interactions utilizing individual-level information. However, one-stage IPD models are often wrongly specified, such that interactions are based on amalgamating within- and across-trial information. We compare, through simulations and an applied example, fixed-effect and random-effects models for a one-stage IPD meta-analysis of time-to-event data where the goal is to estimate a treatment-covariate interaction. We show that it is crucial to centre patient-level covariates by their mean value in each trial, in order to separate out within-trial and across-trial information. Otherwise, bias and coverage of interaction estimates may be adversely affected, leading to potentially erroneous conclusions driven by ecological bias. We revisit an IPD meta-analysis of five epilepsy trials and examine age as a treatment effect modifier. The interaction is -0.011 (95% CI: -0.019 to -0.003; p = 0.004), and thus highly significant, when amalgamating within-trial and across-trial information. However, when separating within-trial from across-trial information, the interaction is -0.007 (95% CI: -0.019 to 0.005; p = 0.22), and thus its magnitude and statistical significance are greatly reduced. We recommend that meta-analysts should only use within-trial information to examine individual predictors of treatment effect and that one-stage IPD models should separate within-trial from across-trial information to avoid ecological bias. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

摘要

分层医学利用与差异治疗效果相关的个体水平协变量,也称为治疗 - 协变量相互作用。当有多个试验可用时,荟萃分析用于通过合并数据来帮助检测真正的治疗 - 协变量相互作用。试验水平信息的元回归容易出现低效能和生态学偏倚,因此,个体参与者数据(IPD)荟萃分析更适合利用个体水平信息来检验相互作用。然而,单阶段IPD模型常常被错误设定,使得相互作用基于合并试验内和试验间的信息。我们通过模拟和一个应用实例,比较了用于事件发生时间数据的单阶段IPD荟萃分析的固定效应模型和随机效应模型,其目的是估计治疗 - 协变量相互作用。我们表明,至关重要的是按每个试验中的均值对患者水平协变量进行中心化,以便分离试验内和试验间的信息。否则,相互作用估计的偏倚和覆盖范围可能会受到不利影响,导致由生态学偏倚驱动的潜在错误结论。我们重新审视了一项对五项癫痫试验的IPD荟萃分析,并将年龄作为治疗效果修饰因素进行研究。当合并试验内和试验间信息时,相互作用为 -0.011(95%置信区间:-0.019至 -0.003;p = 0.004),因此具有高度显著性。然而,当将试验内信息与试验间信息分开时,相互作用为 -0.007(95%置信区间:-0.019至0.005;p = 0.22),因此其大小和统计学显著性大大降低。我们建议荟萃分析者应仅使用试验内信息来检验治疗效果的个体预测因素,并且单阶段IPD模型应将试验内信息与试验间信息分开,以避免生态学偏倚。© 2016作者。《医学统计学》由John Wiley & Sons Ltd出版。

相似文献

引用本文的文献

本文引用的文献

2
Multivariate meta-analysis using individual participant data.使用个体参与者数据的多变量荟萃分析。
Res Synth Methods. 2015 Jun;6(2):157-74. doi: 10.1002/jrsm.1129. Epub 2014 Nov 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验