Bortz D M, Jackson T L, Taylor K A, Thompson A P, Younger J G
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA.
Bull Math Biol. 2008 Apr;70(3):745-68. doi: 10.1007/s11538-007-9277-y. Epub 2007 Dec 11.
The bacterial pathogen Klebsiella pneumoniae is a cause of community- and hospital-acquired lung, urinary tract and blood stream infections. It is a common contaminant of indwelling catheters and it is theorized in that context that systemic infection follows shedding of aggregates off of surface-adherent biofilm colonies. In an effort to better understand bacterial proliferation in the host bloodstream, we develop a PDE model for the flocculation dynamics of Klebsiella pneumoniae in suspension. Existence and uniqueness results are provided, as well as a brief description of the numerical approximation scheme. We generate artificial data and illustrate the requirements to accurately identify proliferation, aggregation, and fragmentation of flocs in the experimental domain of interest.
细菌病原体肺炎克雷伯菌是社区获得性和医院获得性肺部、泌尿道及血流感染的病因。它是留置导管的常见污染物,在此背景下有理论认为,全身感染是由于表面附着的生物膜菌落上的聚集体脱落所致。为了更好地理解宿主血流中的细菌增殖情况,我们建立了一个关于肺炎克雷伯菌在悬浮液中絮凝动力学的偏微分方程(PDE)模型。给出了存在性和唯一性结果,以及对数值近似方案的简要描述。我们生成了人工数据,并说明了在感兴趣的实验域中准确识别絮凝物增殖、聚集和破碎的要求。