Suppr超能文献

在模拟血流流体动力学条件下生长的肺炎克雷伯菌中的多细胞性与抗生素耐药性

Multicellularity and antibiotic resistance in Klebsiella pneumoniae grown under bloodstream-mimicking fluid dynamic conditions.

作者信息

Thornton Margaret M, Chung-Esaki Hangyul M, Irvin Charlene B, Bortz David M, Solomon Michael J, Younger John G

机构信息

Michigan Critical Injury and Illness Research Center and Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Infect Dis. 2012 Aug 15;206(4):588-95. doi: 10.1093/infdis/jis397. Epub 2012 Jun 18.

Abstract

BACKGROUND

While the importance of fluid dynamical conditions is well recognized in the growth of biofilms, their role during bacteremia is unknown. We examined the impact of physiological fluid shear forces on the development of multicellular aggregates of Klebsiella pneumoniae.

METHODS

Wild-type and O-antigen or capsular mutants of K. pneumoniae were grown as broth culture in a Taylor-Couette flow cell configured to provide continuous shear forces comparable to those encountered in the human arterial circulation (ie, on the order of 1.0 Pa). The size distribution and antibiotic resistance of aggregates formed in this apparatus were determined, as was their ability to persist in the bloodstream of mice following intravenous injection.

RESULTS

Unlike growth in shaking flasks, bacteria grown in the test apparatus readily formed aggregates, a phenotype largely absent in capsular mutants and to a lesser degree in O-antigen mutants. Aggregates were found to persist in the bloodstream of mice. Importantly, organisms grown under physiological shear were found to have an antibiotic resistance phenotype intermediate between that of fully planktonic and biofilm states.

CONCLUSIONS

When grown under intravascular-magnitude fluid dynamic conditions, K. pneumoniae spontaneously develops into multicellular aggregates that are capable of persisting in the circulation and exhibit increased antibiotic resistance.

摘要

背景

虽然流体动力学条件在生物膜生长中的重要性已得到充分认识,但其在菌血症过程中的作用尚不清楚。我们研究了生理流体剪切力对肺炎克雷伯菌多细胞聚集体形成的影响。

方法

肺炎克雷伯菌的野生型、O抗原或荚膜突变体在泰勒-库埃特流动池中进行肉汤培养,该流动池配置为提供与人体动脉循环中相当的持续剪切力(即约1.0帕斯卡)。测定在该装置中形成的聚集体的大小分布和抗生素抗性,以及它们在静脉注射后在小鼠血液中持续存在的能力。

结果

与在摇瓶中生长不同,在测试装置中生长的细菌很容易形成聚集体,这种表型在荚膜突变体中基本不存在,在O抗原突变体中程度较轻。发现聚集体在小鼠血液中持续存在。重要的是,发现在生理剪切力下生长的生物体具有介于完全浮游状态和生物膜状态之间的抗生素抗性表型。

结论

当在血管内大小的流体动力学条件下生长时,肺炎克雷伯菌会自发形成多细胞聚集体,这些聚集体能够在循环中持续存在并表现出增强的抗生素抗性。

相似文献

1
Multicellularity and antibiotic resistance in Klebsiella pneumoniae grown under bloodstream-mimicking fluid dynamic conditions.
J Infect Dis. 2012 Aug 15;206(4):588-95. doi: 10.1093/infdis/jis397. Epub 2012 Jun 18.
2
Contribution of the Klebsiella pneumoniae capsule to bacterial aggregate and biofilm microstructures.
Appl Environ Microbiol. 2011 Mar;77(5):1777-82. doi: 10.1128/AEM.01752-10. Epub 2011 Jan 14.
5
Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin.
Antimicrob Agents Chemother. 2000 Jul;44(7):1818-24. doi: 10.1128/AAC.44.7.1818-1824.2000.
6
Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics.
J Antibiot (Tokyo). 2013 Feb;66(2):61-6. doi: 10.1038/ja.2012.101. Epub 2012 Nov 21.
7
Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15-producing Klebsiella pneumoniae isolate.
J Antimicrob Chemother. 2012 Sep;67(9):2123-30. doi: 10.1093/jac/dks169. Epub 2012 May 10.
10
Understanding, preventing and eradicating Klebsiella pneumoniae biofilms.
Future Microbiol. 2016;11(4):527-38. doi: 10.2217/fmb.16.7. Epub 2016 Apr 11.

引用本文的文献

2
Potential complications when developing gene deletion clones in Xylella fastidiosa.
BMC Res Notes. 2015 Apr 16;8:155. doi: 10.1186/s13104-015-1117-9.
3
A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model.
Int J Nanomedicine. 2015 Feb 9;10:1045-59. doi: 10.2147/IJN.S73303. eCollection 2015.
4
rheology of bacterial biofilms.
Soft Matter. 2013 Jan 7;9(1):122-131. doi: 10.1039/C2SM27005F.
5
Lyn regulates inflammatory responses in Klebsiella pneumoniae infection via the p38/NF-κB pathway.
Eur J Immunol. 2014 Mar;44(3):763-73. doi: 10.1002/eji.201343972. Epub 2013 Dec 16.
6
A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia.
PLoS Pathog. 2013 Feb;9(2):e1003175. doi: 10.1371/journal.ppat.1003175. Epub 2013 Feb 14.
7
Concentration-dependent activity of antibiotics in natural environments.
Front Microbiol. 2013 Feb 13;4:20. doi: 10.3389/fmicb.2013.00020. eCollection 2013.
8
Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed.
Virulence. 2013 Feb 15;4(2):107-18. doi: 10.4161/viru.22718. Epub 2013 Jan 9.

本文引用的文献

1
Postfragmentation density function for bacterial aggregates in laminar flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041911. doi: 10.1103/PhysRevE.83.041911. Epub 2011 Apr 15.
2
Contribution of the Klebsiella pneumoniae capsule to bacterial aggregate and biofilm microstructures.
Appl Environ Microbiol. 2011 Mar;77(5):1777-82. doi: 10.1128/AEM.01752-10. Epub 2011 Jan 14.
3
Dynamics of human complement-mediated killing of Klebsiella pneumoniae.
Am J Respir Cell Mol Biol. 2010 Nov;43(5):585-90. doi: 10.1165/rcmb.2009-0292OC. Epub 2009 Dec 11.
4
Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia.
Am J Med. 2009 Sep;122(9):866-73. doi: 10.1016/j.amjmed.2009.03.034.
5
Bacteremia associated with toothbrushing and dental extraction.
Circulation. 2008 Jun 17;117(24):3118-25. doi: 10.1161/CIRCULATIONAHA.107.758524. Epub 2008 Jun 9.
6
Dynamical system analysis of Staphylococcus epidermidis bloodstream infection.
Shock. 2008 Nov;30(5):518-26. doi: 10.1097/SHK.0b013e31816a0b77.
7
Klebsiella pneumoniae flocculation dynamics.
Bull Math Biol. 2008 Apr;70(3):745-68. doi: 10.1007/s11538-007-9277-y. Epub 2007 Dec 11.
8
Lipopolysaccharide O-antigen promotes persistent murine bacteremia.
Shock. 2007 Feb;27(2):186-91. doi: 10.1097/01.shk.0000238058.23837.21.
9
Universal scaling for polymer chain scission in turbulence.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16660-5. doi: 10.1073/pnas.0607933103. Epub 2006 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验