Suppr超能文献

一类依赖条件概率测度的发展方程的一个反问题。

An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations.

作者信息

Mirzaev Inom, Byrne Erin C, Bortz David M

机构信息

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526.

The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760.

出版信息

Inverse Probl. 2016;32(9). doi: 10.1088/0266-5611/32/9/095005. Epub 2016 Jul 15.

Abstract

We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach.

摘要

我们研究了在大小结构种群建模中出现的依赖测度的演化方程中识别条件概率测度的反问题。我们将反问题表述为概率测度估计的最小二乘问题。利用普罗霍罗夫度量框架,我们证明了最小二乘估计的存在性和一致性,并概述了一种用于逼近条件概率测度的离散化方案。对于该方案,我们证明了一般方法的稳定性。这项工作的动机来自于絮凝的偏微分方程(PDE)模型,其中破碎后条件概率测度的形状对解的动力学有很大影响。为了说明我们的方法,我们将该理论应用于悬浮液中絮凝细菌聚集体的种群动力学研究中出现的一个特定的PDE模型,并为该方法的实用性提供了数值证据。

相似文献

1
An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations.
Inverse Probl. 2016;32(9). doi: 10.1088/0266-5611/32/9/095005. Epub 2016 Jul 15.
2
Numerical rate function determination in partial differential equations modeling cell population dynamics.
J Math Biol. 2017 Feb;74(3):533-565. doi: 10.1007/s00285-016-1032-2. Epub 2016 Jun 13.
3
THE PROHOROV METRIC FRAMEWORK AND AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs.
Commun Appl Anal. 2018;22(3):415-446. Epub 2018 Jun 19.
4
A numerical framework for computing steady states of structured population models and their stability.
Math Biosci Eng. 2017 Aug 1;14(4):933-952. doi: 10.3934/mbe.2017049.
5
A numerical framework for computing steady states of structured population models and their stability.
Math Biosci Eng. 2017 Aug 1;14(4):933-952. doi: 10.3934/mbe.2017049.
6
The influence of numerical error on parameter estimation and uncertainty quantification for advective PDE models.
Inverse Probl. 2019 Jun;35(6). doi: 10.1088/1361-6420/ab10bb. Epub 2019 May 29.
7
A Kinetic Finite Volume Discretization of the Multidimensional PIDE Model for Gene Regulatory Networks.
Bull Math Biol. 2024 Jan 22;86(2):22. doi: 10.1007/s11538-023-01251-3.
8
Statistical analysis of differential equations: introducing probability measures on numerical solutions.
Stat Comput. 2017;27(4):1065-1082. doi: 10.1007/s11222-016-9671-0. Epub 2016 Jun 2.
9
A numerical method for solving a stochastic inverse problem for parameters.
Ann Nucl Energy. 2013 Feb;52. doi: 10.1016/j.anucene.2012.05.016.
10

本文引用的文献

1
Systems biology. Conditional density-based analysis of T cell signaling in single-cell data.
Science. 2014 Nov 28;346(6213):1250689. doi: 10.1126/science.1250689. Epub 2014 Oct 23.
2
Estimating the division rate for the growth-fragmentation equation.
J Math Biol. 2013 Jul;67(1):69-103. doi: 10.1007/s00285-012-0553-6. Epub 2012 Jun 5.
3
ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS.
SIAM Rev Soc Ind Appl Math. 2011 Jan 1;53(1):3-39. doi: 10.1137/090757009.
4
Postfragmentation density function for bacterial aggregates in laminar flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041911. doi: 10.1103/PhysRevE.83.041911. Epub 2011 Apr 15.
5
Modeling and measurement of yeast flocculation.
Biotechnol Prog. 1986 Jun;2(2):91-7. doi: 10.1002/btpr.5420020208.
6
Estimation of cell proliferation dynamics using CFSE data.
Bull Math Biol. 2011 Jan;73(1):116-50. doi: 10.1007/s11538-010-9524-5. Epub 2010 Mar 3.
7
Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data.
J Math Biol. 2009 Nov;59(5):581-603. doi: 10.1007/s00285-008-0244-5. Epub 2008 Dec 19.
8
Klebsiella pneumoniae flocculation dynamics.
Bull Math Biol. 2008 Apr;70(3):745-68. doi: 10.1007/s11538-007-9277-y. Epub 2007 Dec 11.
9
Numerical modelling of label-structured cell population growth using CFSE distribution data.
Theor Biol Med Model. 2007 Jul 24;4:26. doi: 10.1186/1742-4682-4-26.
10
Estimation of dynamic rate parameters in insect populations undergoing sublethal exposure to pesticides.
Bull Math Biol. 2007 Oct;69(7):2139-80. doi: 10.1007/s11538-007-9207-z. Epub 2007 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验