Araki Fujio
Department of Radiological Technology, Kumamoto University School of Health Sciences, 4-24-1, Kuhonji, Kumamoto, 862-0976, Japan.
Med Phys. 2007 Nov;34(11):4368-77. doi: 10.1118/1.2790840.
In some recent dosimetry protocols, plastic is allowed as a phantom material for the determination of an absorbed dose to water in electron beams, especially for low energy with beam qualities R50 < 4 g/cm2. In electron dosimetry with plastic, a depth-scaling factor, cpl, and a chamber-dependent fluence correction factor, h(pl), are needed to convert the dose measured at a water-equivalent reference depth in plastic to a dose at a reference depth in water. The purpose of this study is to calculate correction factors for the use of plastic phantoms for clinical electron dosimetry using the EGSnrc Monte Carlo code system. RMI-457 and WE-211 were investigated as phantom materials. First the c(pl) values for plastic materials were calculated as a function of a half-value depth of maximum ionization, I50, in plastic. The c(pl) values for RMI-457 and WE-211 varied from 0.992 to 1.002 and from 0.971 to 0.979, respectively, in a range of nominal energies from 4 MeV to 18 MeV, and varied slightly as a function of I50 in plastic. Since h(pl) values depend on the wall correction factor, P(wall), of the chamber used, they are evaluated using a pure electron fluence correction factor, phi(pl)w, and P(wall)w and P(wall)pl, for a combination of water or plastic phantoms and plane-parallel ionization chambers (NACP-02, Markus and Roos). The phi(pl)w and P(wall) (P(wall)w and P(wall)pl) values were calculated as a function of the water-equivalent depth in plastic materials and at a reference depth as a function of R50 in water, respectively. The phi(pl)w values varied from 1.024 at 4 MeV to 1.013 at 18 MeV for RMI-457, and from 1.025 to 1.016 for WE-211. P(wall)w values for plane-parallel chambers showed values in the order of 1.5% to 2% larger than unity at 4 MeV, consistent with earlier results. The P(wall)pl values of RMI-457 and WE-211 were close to unity for all the energy beams. Finally, calculated h(pl) values of RMI-457 ranged from 1.009 to 1.005, from 1.010 to 1.003 and from 1.011 to 1.007 for NACP-02, Markus and Roos chambers, respectively, in the range of 4 MeV to 18 MeV, and the values of WE-211 were 1.010 to 1.004, 1.010 to 1.004 and 1.012 to 1.008, respectively. The calculated h(pl), values for the Markus chamber agreed within their combined uncertainty with the measured data.
在一些最新的剂量测定协议中,塑料被允许作为一种模体材料,用于确定电子束中水体模的吸收剂量,特别是对于低能电子束,其射束质R50 < 4 g/cm² 。在使用塑料的电子剂量测定中,需要一个深度缩放因子cpl和一个与电离室相关的注量修正因子h(pl),以便将在塑料中与水等效的参考深度处测得的剂量转换为在水体模中参考深度处的剂量。本研究的目的是使用EGSnrc蒙特卡罗代码系统计算用于临床电子剂量测定的塑料模体的修正因子。对RMI - 457和WE - 211这两种模体材料进行了研究。首先,计算塑料材料的c(pl)值,作为塑料中最大电离半值深度I50的函数。在4 MeV至18 MeV的标称能量范围内,RMI - 457和WE - 211的c(pl)值分别在0.992至1.002和0.971至0.979之间变化,并随塑料中的I50略有变化。由于h(pl)值取决于所用电离室的壁修正因子P(wall),因此使用纯电子注量修正因子phi(pl)w以及针对水模或塑料模与平行板电离室(NACP - 02、Markus和Roos)组合的P(wall)w和P(wall)pl来评估h(pl)值。phi(pl)w值和P(wall)(P(wall)w和P(wall)pl)值分别作为塑料材料中与水等效深度的函数以及水体模中参考深度处R50的函数进行计算。对于RMI - 457,phi(pl)w值在4 MeV时为1.024,在18 MeV时为1.013;对于WE - 211,其值在1.025至1.016之间。平行板电离室的P(wall)w值在4 MeV时比1大1.5%至2%左右,与早期结果一致。对于所有能量的射束,RMI - 457和WE - 211的P(wall)pl值都接近1。最后,在4 MeV至18 MeV范围内,RMI - 457对于NACP - 02、Markus和Roos电离室计算得到的h(pl)值分别在1.009至1.005、1.010至1.003和1.011至1.007之间;WE - 211的h(pl)值分别为1.010至1.004、1.010至1.004和1.012至1.008。对于Markus电离室计算得到的h(pl)值在其合成不确定度范围内与测量数据一致。