Suppr超能文献

临床电子束中平行板 NACP-02 室的壁扰动修正。

On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.

机构信息

University Hospital Marburg, Philipps-University, D-35043 Marburg, Germany.

出版信息

Med Phys. 2011 Feb;38(2):1045-54. doi: 10.1118/1.3544660.

Abstract

PURPOSE

In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p(wall) and P(cav)) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount deltaz. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift deltaz for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified.

METHODS

The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps deltaz around the depth of measurement. The optimal shift deltaz is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation correction is calculated as the ratio between doses for the complete chamber and a wall-less air cavity.

RESULTS

The high energy part of the fluence spectra within the chamber strongly varies even with small chamber shifts, allowing the determination of deltaz within micrometers. For the NACP-02 chamber a shift deltaz = -0.058 cm results. This value is independent of the energy of the primary electrons as well as of the depth within the phantom and it is in good agreement with the value recommended in the German dosimetry protocol. Applying this shift, the calculated wall perturbation correction as a function of depth is varying less than 1% from zero up to the half value depth R50 for electron energies in the range of 6-21 MeV. The remaining depth dependence can mainly be attributed to the scatter properties of the entrance window. When neglecting the nonwater equivalence of the entrance window, the variation of p(wall) with depth is up to 10% and more, especially for low electron energies.

CONCLUSIONS

The variation of the wall perturbation correction for the NACP-02 chamber in clinical electron beams strongly depends on the positioning of the chamber. Applying a shift deltaz = -0.058 cm toward the focus ensures that the primary electron spectrum within the chamber bears the largest resemblance to the fluence of a wall-less cavity. Hence, the influence of the chamber walls on the perturbation correction can be separated out and the residual variation of p(wall) with depth is minimized.

摘要

目的

近年来,已有数项蒙特卡罗研究针对平行板电离室在临床电子射束中的扰频修正进行了发表。在这些研究中,人们认识到相关修正因子(壁修正因子 p(wall)和腔修正因子 P(cav))在参考深度以外的深度具有强烈的深度依赖性,并且已经表明,其随深度的变化对电离室有效测量点的选择非常敏感。目前,并非所有现行剂量学规程都对平行板电离室在临床电子射束中的定位提出了相同的建议。IAEA TRS-398 以及 IPEM 规程和德国规程 DIN 6800-2 将体模内的测量深度解释为水等效深度,即入口窗的非水等效性必须通过将电离室移动距离 deltaz 来加以考虑。这种定位应确保从水模表面穿过入口窗到达电离室参考点的初级电子与未受扰水模中的初级电子承受相同的能量损失。本研究的目的是确定 NACP-02 电离室的距离 deltaz,并计算出作为深度函数的壁扰修正。此外,还确定了不同电离室壁对壁扰修正的贡献。

方法

使用蒙特卡罗代码 EGSnrc 在水模中的不同深度处针对不同的临床电子射束,计算 NACP-02 电离室和无壁空气腔中的剂量和注量。为了确定要进行的修正以补偿入口窗的非水等效性,将电离室沿测量深度以步长 deltaz 进行移动。通过比较腔内的光谱注量和无壁空腔,确定最佳的距离 deltaz。将完整电离室与无壁空气腔的剂量比作为壁修正因子进行计算。

结果

即使电离室发生很小的移动,腔内注量的高能部分也会发生强烈变化,这使得能够在微米级的范围内确定距离 deltaz。对于 NACP-02 电离室,结果为距离 deltaz = -0.058 cm。该值与初级电子的能量以及体模内的深度无关,与德国剂量学规程中建议的值非常吻合。应用此距离 deltaz,计算出的壁扰修正作为深度函数的变化在 6-21 MeV 范围内的电子能量从 0 到半值深度 R50 时小于 1%。剩余的深度依赖性主要归因于入口窗的散射特性。如果忽略入口窗的非水等效性,壁修正因子 p(wall)随深度的变化可达 10%甚至更多,尤其是对于低电子能量。

结论

NACP-02 电离室在临床电子射束中的壁扰修正的变化强烈取决于电离室的定位。将距离 deltaz = -0.058 cm 朝焦点方向移动,可确保腔内的初级电子谱与无壁空腔的注量最为相似。因此,可以分离出电离室壁对扰频修正的影响,并最小化 p(wall)随深度的剩余变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验