Suppr超能文献

自组织映射网络中的合作在存在输入背景活动的情况下增强了信息传输。

Cooperation in self-organizing map networks enhances information transmission in the presence of input background activity.

作者信息

Raginsky Maxim, Anastasio Thomas J

机构信息

Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N Mathews Ave, Urbana, IL 61801, USA.

出版信息

Biol Cybern. 2008 Mar;98(3):195-211. doi: 10.1007/s00422-007-0203-z. Epub 2007 Dec 12.

Abstract

The self-organizing map (SOM) algorithm produces artificial neural maps by simulating competition and cooperation among neurons. We study the consequences of input background activity on simulated self-organization, using the SOM, of the retinotopic map in the superior colliculus. The colliculus not only represents its inputs but also uses them to localize saccadic targets. Using the colliculus as a test-bed enables us to quantify the results of self- organization both descriptively, in terms of input-output mutual information, and functionally, in terms of the probability of error (expected distortion) in localizing targets. We find that mutual information is low, and distortion is high, when the SOM operates in the presence of input background activity but without the cooperative component (no neighbor training). Cooperation (training neighbors) greatly increases mutual information and greatly decreases expected distortion. Our simulation results extend theoretical work suggesting that cooperative mechanisms are needed to increase the information content of neural representations. They also identify input background activity as a factor affecting the self-organization of information-transmitting channels in the nervous system.

摘要

自组织映射(SOM)算法通过模拟神经元之间的竞争与合作来生成人工神经映射。我们利用SOM研究输入背景活动对中脑上丘视网膜拓扑映射模拟自组织的影响。上丘不仅表征其输入,还利用这些输入来定位扫视目标。以上丘作为测试平台,使我们能够从描述性角度,根据输入-输出互信息,以及从功能性角度,根据定位目标时的错误概率(预期失真)来量化自组织的结果。我们发现,当SOM在存在输入背景活动但没有合作成分(无邻域训练)的情况下运行时,互信息较低,失真较高。合作(训练邻域)极大地增加了互信息,并大大降低了预期失真。我们的模拟结果扩展了理论研究工作,表明需要合作机制来增加神经表征的信息含量。它们还将输入背景活动确定为影响神经系统中信息传输通道自组织的一个因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验