Carlos Letelier J, Mpodozis J
Departamento de Biología, Universidad de Chile, Santiago.
Biol Res. 1995;28(1):97-104.
The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.
神经拓扑结构的自组织过程(其中神经连接遵循赫布动力学)是在线性算子理论的框架内构建的。推导出了一个描述连接两个神经层的整体突触强度随时间演化的通用且精确的方程。这个线性矩阵方程类似于用于描述物理中振荡系统的方程,通过引入非线性项进行修改,以捕捉自组织(或自动组织)过程。通过计算机模拟分析了一个简单且小型的系统的行为,该系统包含一个模拟代谢限制的非线性因素。讨论了这个低维模型系统中简单“秩序”(或组织程度)的出现。