Suppr超能文献

赫布神经网络中自组织的线性分析。

Linear analysis of auto-organization in Hebbian neural networks.

作者信息

Carlos Letelier J, Mpodozis J

机构信息

Departamento de Biología, Universidad de Chile, Santiago.

出版信息

Biol Res. 1995;28(1):97-104.

PMID:8728824
Abstract

The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.

摘要

神经拓扑结构的自组织过程(其中神经连接遵循赫布动力学)是在线性算子理论的框架内构建的。推导出了一个描述连接两个神经层的整体突触强度随时间演化的通用且精确的方程。这个线性矩阵方程类似于用于描述物理中振荡系统的方程,通过引入非线性项进行修改,以捕捉自组织(或自动组织)过程。通过计算机模拟分析了一个简单且小型的系统的行为,该系统包含一个模拟代谢限制的非线性因素。讨论了这个低维模型系统中简单“秩序”(或组织程度)的出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验