O'Rourke Brian, Cortassa Sonia, Akar Fadi, Aon Miguel
The Johns Hopkins University, Institute of Molecular Cardiobiology, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA.
Novartis Found Symp. 2007;287:140-51; discussion 152-6. doi: 10.1002/9780470725207.ch10.
The study of mitochondrial physiology continues to provide new and surprising insights into how this organelle participates in the integration of cellular activities, far beyond the traditional view of the mitochondrion in energy transduction. Emerging evidence indicates that mitochondria are a centre of organization of numerous signalling pathways and are a cellular target that undergoes vast modification during both the acute and chronic phases of disease development and ageing. In this context, it is also important to understand the spatial and temporal organization of mitochondrial function and how this might influence the cell's response to stress. Here, we present evidence supporting the hypothesis that mitochondria from heart cells act as a network of coupled oscillators, capable of producing frequency- and/or amplitude-encoded reactive oxygen species (ROS) signals under physiological conditions. This intrinsic property of the mitochondria can lead to a mitochondrial 'critical' state, i.e. an emergent macroscopic response manifested as complete collapse or synchronized oscillation in the mitochondrial network under stress. The large amplitude depolarizations of deltapsi(m) and bursts of ROS have widespread effects on all subsystems of the cell including energy-sensitive ion channels in the plasma membrane, producing an effect that scales to cause organ level electrical and contractile dysfunction. Mitochondrial ion channels appear to play a key role in the mechanism of this non-linear network phenomenon and hence are an important target for potential therapeutic intervention.
线粒体生理学的研究不断为我们提供新的、令人惊讶的见解,揭示了这个细胞器如何参与细胞活动的整合,这远远超出了线粒体在能量转导方面的传统观点。新出现的证据表明,线粒体是众多信号通路的组织中心,并且是在疾病发展和衰老的急性和慢性阶段都会发生巨大变化的细胞靶点。在这种情况下,了解线粒体功能的时空组织以及这如何影响细胞对压力的反应也很重要。在这里,我们提供证据支持以下假设:心脏细胞中的线粒体充当耦合振荡器网络,能够在生理条件下产生频率和/或幅度编码的活性氧(ROS)信号。线粒体的这种内在特性可导致线粒体“临界”状态,即在压力下线粒体网络中表现为完全崩溃或同步振荡的一种宏观反应。线粒体膜电位(ΔΨm)的大幅度去极化和ROS爆发对细胞的所有子系统都有广泛影响,包括质膜中的能量敏感离子通道,产生的效应会扩展至引起器官水平的电和收缩功能障碍。线粒体离子通道似乎在这种非线性网络现象的机制中起关键作用,因此是潜在治疗干预的重要靶点。