Cortassa Sonia, Aon Miguel A, Winslow Raimond L, O'Rourke Brian
The Johns Hopkins University, Institute of Molecular Cardiobiology and Center for Cardiovascular Bioinformatics and Modeling, Baltimore, Maryland 21205-2195, USA.
Biophys J. 2004 Sep;87(3):2060-73. doi: 10.1529/biophysj.104.041749.
We describe a unique mitochondrial oscillator that depends on oxidative phosphorylation, reactive oxygen species (ROS), and mitochondrial inner membrane ion channels. Cell-wide synchronized oscillations in mitochondrial membrane potential (Delta Psi(m)), NADH, and ROS production have been recently described in isolated cardiomyocytes, and we have hypothesized that the balance between superoxide anion efflux through inner membrane anion channels and the intracellular ROS scavenging capacity play a key role in the oscillatory mechanism. Here, we formally test the hypothesis using a computational model of mitochondrial energetics and Ca(2+) handling including mitochondrial ROS production, cytoplasmic ROS scavenging, and ROS activation of inner membrane anion flux. The mathematical model reproduces the period and phase of the observed oscillations in Delta Psi(m), NADH, and ROS. Moreover, we experimentally verify model predictions that the period of the oscillator can be modulated by altering the concentration of ROS scavengers or the rate of oxidative phosphorylation, and that the redox state of the glutathione pool oscillates. In addition to its role in cellular dysfunction during metabolic stress, the period of the oscillator can be shown to span a wide range, from milliseconds to hours, suggesting that it may also be a mechanism for physiological timekeeping and/or redox signaling.
我们描述了一种独特的线粒体振荡器,它依赖于氧化磷酸化、活性氧(ROS)和线粒体内膜离子通道。最近在分离的心肌细胞中描述了线粒体膜电位(ΔΨm)、NADH和ROS产生的全细胞同步振荡,并且我们推测通过内膜阴离子通道的超氧阴离子外流与细胞内ROS清除能力之间的平衡在振荡机制中起关键作用。在这里,我们使用线粒体能量学和Ca(2+)处理的计算模型正式检验该假设,该模型包括线粒体ROS产生、细胞质ROS清除以及内膜阴离子通量的ROS激活。数学模型再现了观察到的ΔΨm、NADH和ROS振荡的周期和相位。此外,我们通过实验验证了模型预测,即振荡器的周期可以通过改变ROS清除剂的浓度或氧化磷酸化速率来调节,并且谷胱甘肽池的氧化还原状态会振荡。除了其在代谢应激期间细胞功能障碍中的作用外,振荡器的周期可以显示出跨越从毫秒到小时的广泛范围,这表明它也可能是一种生理计时和/或氧化还原信号传导的机制。