Suppr超能文献

模型验证中E/O比率的非参数推断

Nonparametric inference on the E/O ratio in model validation.

作者信息

Qu Yongming, Wang Yanping

机构信息

Eli Lilly and Company, Indianapolis, IN 46285, USA.

出版信息

Stat Med. 2008 Jul 30;27(17):3340-9. doi: 10.1002/sim.3166.

Abstract

In preventing diseases such as cancers and osteoporosis, statistical models are often used to identify subjects with high risks. The ratio of the expected (or predicted) number of cases in the target population and the observed numbers of cases (the E/O ratio) is a useful quantity to evaluate the goodness of fit of the model. The model is usually evaluated on a sample taken from the target population and, in the literature, statistical inferences on the E/O ratio often assume that the expected number is a constant and the observed number follows a Poisson distribution. In this paper, we introduce a nonparametric method that takes into account the variability of the predicted number due to sampling and its correlation with the observed number. By estimating the variance of the estimated E/O ratio more accurately, this nonparametric approach offers better inferences. In addition, we propose to use an F-statistic to test the goodness of a model across subgroups defined by certain risk factors.

摘要

在预防癌症和骨质疏松症等疾病时,统计模型常被用于识别高风险个体。目标人群中预期(或预测)病例数与观察到的病例数之比(E/O比)是评估模型拟合优度的一个有用指标。该模型通常在从目标人群中抽取的样本上进行评估,并且在文献中,关于E/O比的统计推断通常假设预期数是一个常数,而观察到的数服从泊松分布。在本文中,我们介绍一种非参数方法,该方法考虑了由于抽样导致的预测数的变异性及其与观察到的数的相关性。通过更准确地估计估计的E/O比的方差,这种非参数方法提供了更好的推断。此外,我们建议使用F统计量来检验由某些风险因素定义的亚组间模型的拟合优度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验