Ni Yan G, Wang Na, Cao Dian J, Sachan Nita, Morris David J, Gerard Robert D, Kuro-O Makoto, Rothermel Beverly A, Hill Joseph A
Donald W. Reynolds Cardiovascular Clinical Research Center, Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20517-22. doi: 10.1073/pnas.0610290104. Epub 2007 Dec 12.
Insulin resistance and metabolic syndrome are rapidly expanding public health problems. Acting through the PI3K/Akt pathway, insulin and insulin-like growth factor-1 (IGF-1) inactivate FoxO transcription factors, a class of highly conserved proteins important in numerous physiological functions. However, even as FoxO is a downstream target of insulin, FoxO factors also control upstream signaling elements governing insulin sensitivity and glucose metabolism. Here, we report that sustained activation of either FoxO1 or FoxO3 in cardiac myocytes increases basal levels of Akt phosphorylation and kinase activity. FoxO-activated Akt directly interacts with and phosphorylates FoxO, providing feedback inhibition. We reported previously that FoxO factors attenuate cardiomyocyte calcineurin (PP2B) activity. We now show that calcineurin forms a complex with Akt and inhibition of calcineurin enhances Akt phosphorylation. In addition, FoxO activity suppresses protein phosphatase 2A (PP2A) and disrupts Akt-PP2A and Akt-calcineurin interactions. Repression of Akt-PP2A/B interactions and phosphatase activities contributes, at least in part, to FoxO-dependent increases in Akt phosphorylation and kinase activity. Resveratrol, an activator of Sirt1, increases the transcriptional activity of FoxO1 and triggers Akt phosphorylation in heart. Importantly, FoxO-mediated increases in Akt activity diminish insulin signaling, as manifested by reduced Akt phosphorylation, reduced membrane translocation of Glut4, and decreased insulin-triggered glucose uptake. Also, inactivation of the gene coding for FoxO3 enhances insulin-dependent Akt phosphorylation. Taken together, this study demonstrates that changes in FoxO activity have a dose-responsive repressive effect on insulin signaling in cardiomyocytes through inhibition of protein phosphatases, which leads to altered Akt activation, reduced insulin sensitivity, and impaired glucose metabolism.
胰岛素抵抗和代谢综合征正迅速成为日益严重的公共卫生问题。胰岛素和胰岛素样生长因子-1(IGF-1)通过PI3K/Akt信号通路发挥作用,使FoxO转录因子失活,FoxO转录因子是一类在众多生理功能中起重要作用的高度保守蛋白。然而,尽管FoxO是胰岛素的下游靶点,但FoxO因子也控制着调节胰岛素敏感性和葡萄糖代谢的上游信号元件。在此,我们报告,心肌细胞中FoxO1或FoxO3的持续激活会增加Akt磷酸化和激酶活性的基础水平。FoxO激活的Akt直接与FoxO相互作用并使其磷酸化,从而提供反馈抑制。我们之前报道过,FoxO因子会减弱心肌细胞钙调神经磷酸酶(PP2B)的活性。我们现在发现,钙调神经磷酸酶与Akt形成复合物,抑制钙调神经磷酸酶可增强Akt磷酸化。此外,FoxO活性会抑制蛋白磷酸酶2A(PP2A),并破坏Akt-PP2A和Akt-钙调神经磷酸酶的相互作用。Akt-PP2A/B相互作用和磷酸酶活性的抑制至少部分促成了FoxO依赖性的Akt磷酸化和激酶活性增加。白藜芦醇是Sirt1的激活剂,可增加FoxO1的转录活性并在心脏中触发Akt磷酸化。重要的是,FoxO介导的Akt活性增加会减弱胰岛素信号,表现为Akt磷酸化减少、Glut4膜转位减少以及胰岛素触发的葡萄糖摄取减少。此外,编码FoxO3的基因失活可增强胰岛素依赖性的Akt磷酸化。综上所述,本研究表明,FoxO活性的变化通过抑制蛋白磷酸酶对心肌细胞中的胰岛素信号产生剂量依赖性的抑制作用,这会导致Akt激活改变、胰岛素敏感性降低和葡萄糖代谢受损。