Semmrich Christine, Storz Tobias, Glaser Jens, Merkel Rudolf, Bausch Andreas R, Kroy Klaus
Lehrstuhl für Biophysik E22, Technische Universität München, James-Franck-Strasse, 85748 Garching, Germany.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20199-203. doi: 10.1073/pnas.0705513104. Epub 2007 Dec 11.
The unique mechanical performance of animal cells and tissues is attributed mostly to their internal biopolymer meshworks. Its perplexing universality and robustness against structural modifications by drugs and mutations is an enigma in cell biology and provides formidable challenges to materials science. Recent investigations could pinpoint highly universal patterns in the soft glassy rheology and nonlinear elasticity of cells and reconstituted networks. Here, we report observations of a glass transition in semidilute F-actin solutions, which could hold the key to a unified explanation of these phenomena. Combining suitable rheological protocols with high-precision dynamic light scattering, we can establish a remarkable rheological redundancy and trace it back to a highly universal exponential stretching of the single-polymer relaxation spectrum of a "glassy wormlike chain." By exploiting the ensuing generalized time-temperature superposition principle, the time domain accessible to microrheometry can be extended by several orders of magnitude, thus opening promising new metrological opportunities.
动物细胞和组织独特的力学性能主要归因于其内部的生物聚合物网络。其令人费解的普遍性以及对药物和突变引起的结构修饰的稳健性,是细胞生物学中的一个谜,也给材料科学带来了巨大挑战。最近的研究能够确定细胞和重构网络在软玻璃态流变学和非线性弹性方面的高度普遍模式。在此,我们报告了在半稀F-肌动蛋白溶液中玻璃化转变的观察结果,这可能是统一解释这些现象的关键。将合适的流变学方法与高精度动态光散射相结合,我们能够建立显著的流变学冗余,并将其追溯到“玻璃态类蠕虫链”单聚合物弛豫谱的高度普遍指数拉伸。通过利用由此产生的广义时间-温度叠加原理,微观流变学可及的时域能扩展几个数量级,从而开启了有前景的新计量学机遇。