Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.
Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany.
BMC Mol Cell Biol. 2020 Nov 4;21(1):76. doi: 10.1186/s12860-020-00319-5.
MreB is a bacterial ortholog of actin and forms mobile filaments underneath the cell membrane, perpendicular to the long axis of the cell, which play a crucial role for cell shape maintenance. We wished to visualize Bacillus subtilis MreB in vitro and therefore established a protocol to obtain monomeric protein, which could be polymerized on a planar membrane system, or associated with large membrane vesicles.
Using a planar membrane system and electron microscopy, we show that Bacillus subtilis MreB forms bundles of filaments, which can branch and fuse, with an average width of 70 nm. Fluorescence microscopy of non-polymerized YFP-MreB, CFP-Mbl and mCherry-MreBH proteins showed uniform binding to the membrane, suggesting that 2D diffusion along the membrane could facilitate filament formation. After addition of divalent magnesium and calcium ions, all three proteins formed highly disordered sheets of filaments that could split up or merge, such that at high protein concentration, MreB and its paralogs generated a network of filaments extending away from the membrane. Filament formation was positively affected by divalent ions and negatively by monovalent ions. YFP-MreB or CFP-Mbl also formed filaments between two adjacent membranes, which frequently has a curved appearance. New MreB, Mbl or MreBH monomers could add to the lateral side of preexisting filaments, and MreB paralogs co-polymerized, indicating direct lateral interaction between MreB paralogs.
Our data show that B. subtilis MreB paralogs do not easily form ordered filaments in vitro, possibly due to extensive lateral contacts, but can co-polymerise. Monomeric MreB, Mbl and MreBH uniformly bind to a membrane, and form irregular and frequently split up filamentous structures, facilitated by the addition of divalent ions, and counteracted by monovalent ions, suggesting that intracellular potassium levels may be one important factor to counteract extensive filament formation and filament splitting in vivo.
MreB 是细菌肌动蛋白的同源物,在细胞膜下形成可移动的丝状结构,垂直于细胞的长轴,对于维持细胞形状起着至关重要的作用。我们希望在体外可视化枯草芽孢杆菌 MreB,因此建立了一种获取单体蛋白的方案,该蛋白可在平面膜系统上聚合,或与大膜泡结合。
使用平面膜系统和电子显微镜,我们显示枯草芽孢杆菌 MreB 形成丝状结构的束,这些丝状结构可以分支和融合,平均宽度为 70nm。非聚合的 YFP-MreB、CFP-Mbl 和 mCherry-MreBH 蛋白的荧光显微镜显示均匀结合到膜上,表明沿膜的二维扩散可以促进丝状结构的形成。加入二价镁和钙离子后,这三种蛋白都形成了高度无序的丝状结构片,可以分裂或融合,因此在高蛋白浓度下,MreB 及其同源物生成了从膜延伸出去的丝状结构网络。丝状结构的形成受到二价离子的促进和单价离子的抑制。YFP-MreB 或 CFP-Mbl 也在两个相邻的膜之间形成丝状结构,这些丝状结构通常具有弯曲的外观。新的 MreB、Mbl 或 MreBH 单体可以添加到预先存在的丝状结构的侧部,并且 MreB 同源物共聚合,表明 MreB 同源物之间存在直接的侧向相互作用。
我们的数据表明,枯草芽孢杆菌 MreB 同源物在体外不易形成有序的丝状结构,可能是由于广泛的侧向接触,但可以共聚合。单体 MreB、Mbl 和 MreBH 均匀地结合到膜上,并形成不规则的、经常分裂的丝状结构,这一过程通过添加二价离子得到促进,通过单价离子得到抑制,这表明细胞内的钾离子水平可能是体内对抗广泛丝状结构形成和丝状结构分裂的一个重要因素。