Salameh Moh'd A, Soares Alexei S, Hockla Alexandra, Radisky Evette S
Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224, USA.
J Biol Chem. 2008 Feb 15;283(7):4115-23. doi: 10.1074/jbc.M708268200. Epub 2007 Dec 12.
Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.
人胰中蛋白酶是胰蛋白酶的一种同工型,对多肽类胰蛋白酶抑制剂表现出异常的抗性,并且已观察到它能将几种此类抑制剂作为底物进行切割。虽然胰蛋白酶活性位点中高度保守的甘氨酸193被精氨酸取代被认为是胰中蛋白酶对抑制剂产生抗性的关键因素,但这种取代如何导致抑制剂切割加速尚不清楚。牛胰蛋白酶抑制剂(BPTI)与胰蛋白酶形成极其稳定且抗切割的复合物,因此对胰中蛋白酶对多肽抑制剂的催化活性提出了严峻挑战。在此,我们报告了胰中蛋白酶和高度同源(但对抑制剂敏感)的人阳离子胰蛋白酶的动力学常数,描述了BPTI的抑制作用以及其被切割的情况,以及胰中蛋白酶 - BPTI和人阳离子胰蛋白酶 - BPTI复合物的晶体结构。我们发现,胰中蛋白酶切割BPTI的速率常数比人阳离子胰蛋白酶快350倍,比牛胰蛋白酶快150,000倍。从晶体结构中,我们看到仅限于几个侧链的小构象调整使得胰中蛋白酶 - BPTI复合物能够形成,克服了由精氨酸193引入的预测空间冲突。我们的结果表明,胰中蛋白酶 - BPTI界面通过以下方式促进催化作用:(a)紧密间隔的胰中蛋白酶精氨酸193和BPTI精氨酸17之间的静电排斥,以及(b)消除酶与BPTI胺离去基团部分之间的两个氢键。我们的模型预测,这些有害相互作用会加速离去基团的解离和脱酰基作用。