Wu Ai-Luen, Kim Jeong-Ho, Zhang Chongben, Unterman Terry G, Chen Jie
Department of Cell and Developmental Biology, 601 South Goodwin Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Endocrinology. 2008 Mar;149(3):1407-14. doi: 10.1210/en.2007-1470. Epub 2007 Dec 13.
The forkhead transcription factor forkhead box protein O1 (FoxO1), a downstream target of phosphatidylinositol 3-kinase/Akt signaling, has been reported to suppress skeletal myocyte differentiation, but the mechanism by which FoxO1 regulates myogenesis is not fully understood. We have previously demonstrated that a nutrient-sensing mammalian target of rapamycin (mTOR) pathway controls the autocrine production of IGF-II and the subsequent phosphatidylinositol 3-kinase/Akt signaling downstream of IGF-II in myogenesis. Here we report a regulatory loop connecting FoxO1 to the mTOR pathway. Inducible activation of a FoxO1 active mutant in the C2C12 mouse myoblasts blocks myogenic differentiation at an early stage and meanwhile leads to proteasome-dependent degradation of a specific subset of components in the mTOR signaling network, including mTOR, raptor, tuberous sclerosis complex 2, and S6 protein kinase 1. This function of FoxO1 requires new protein synthesis, consistent with the idea that a transcriptional target of FoxO1 may be responsible for the degradation of mTOR. We further show that active FoxO1 inhibits IGF-II expression at the transcriptional activation level, through the modulation of mTOR protein levels. Moreover, the addition of exogenous IGF-II fully rescues myocyte differentiation from FoxO inhibition. Taken together, we propose that the mTOR-IGF-II pathway is a major mediator of FoxO's inhibitory function in skeletal myogenesis.
叉头转录因子叉头框蛋白O1(FoxO1)是磷脂酰肌醇3激酶/Akt信号通路的下游靶点,据报道它可抑制骨骼肌细胞分化,但FoxO1调节肌生成的机制尚未完全阐明。我们之前已经证明,一种营养感应的哺乳动物雷帕霉素靶蛋白(mTOR)通路可控制IGF-II的自分泌产生以及肌生成过程中IGF-II下游随后的磷脂酰肌醇3激酶/Akt信号传导。在此我们报道了一个将FoxO1与mTOR通路相连的调节环路。在C2C12小鼠成肌细胞中诱导激活FoxO1活性突变体可在早期阶段阻断肌生成分化,同时导致mTOR信号网络中特定组分的蛋白酶体依赖性降解,这些组分包括mTOR、 Raptor、结节性硬化复合物2和S6蛋白激酶1。FoxO1的这一功能需要新的蛋白质合成,这与FoxO1的一个转录靶点可能负责mTOR降解的观点一致。我们进一步表明,活性FoxO1通过调节mTOR蛋白水平,在转录激活水平抑制IGF-II表达。此外,添加外源性IGF-II可完全挽救FoxO抑制所致的肌细胞分化。综上所述,我们提出mTOR-IGF-II通路是FoxO在骨骼肌生成中发挥抑制功能的主要介质。