Suppr超能文献

古菌中的一条3-羟基丙酸/4-羟基丁酸自养型二氧化碳同化途径。

A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.

作者信息

Berg Ivan A, Kockelkorn Daniel, Buckel Wolfgang, Fuchs Georg

机构信息

Mikrobiologie, Fakultät Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.

出版信息

Science. 2007 Dec 14;318(5857):1782-6. doi: 10.1126/science.1149976.

Abstract

The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.

摘要

将二氧化碳(CO₂)同化为有机物质在数量上是最重要的生物合成过程。我们发现古菌硫化叶菌目(Sulfolobales)中的自养成员嗜热栖热硫化叶菌(Metallosphaera sedula)以乙酰辅酶A(acetyl-CoA)/丙酰辅酶A羧化酶作为关键羧化酶固定CO₂。在这个系统中,一个乙酰辅酶A和两个碳酸氢盐分子通过3-羟基丙酸被还原转化为琥珀酰辅酶A。这个中间体被还原为4-羟基丁酸,并通过4-羟基丁酰辅酶A脱水酶转化为两个乙酰辅酶A分子。这条途径的关键基因不仅在嗜热栖热硫化叶菌中被发现,在硫化叶菌属(Sulfolobus)、嗜热栖热古球菌属(Archaeoglobus)和泉古菌属(Cenarchaeum)的物种中也有发现。此外,全球海洋采样数据库中4-羟基丁酰辅酶A脱水酶序列的数量是另一种关键的光合CO₂固定酶——核酮糖-1,5-二磷酸羧化酶加氧酶序列数量的一半。这表明这种酶在全球碳循环中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验