Suppr超能文献

自养泉古菌中乙酰辅酶A(CoA)羧化酶和丙酰辅酶A羧化酶的存在以及自养碳固定中3-羟基丙酸循环运作的迹象。

Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation.

作者信息

Menendez C, Bauer Z, Huber H, Gad'on N, Stetter K O, Fuchs G

机构信息

Mikrobiologie, Institut Biologie II, Universität Freiburg, Freiburg, Germany.

出版信息

J Bacteriol. 1999 Feb;181(4):1088-98. doi: 10.1128/JB.181.4.1088-1098.1999.

Abstract

The pathway of autotrophic CO2 fixation was studied in the phototrophic bacterium Chloroflexus aurantiacus and in the aerobic thermoacidophilic archaeon Metallosphaera sedula. In both organisms, none of the key enzymes of the reductive pentose phosphate cycle, the reductive citric acid cycle, and the reductive acetyl coenzyme A (acetyl-CoA) pathway were detectable. However, cells contained the biotin-dependent acetyl-CoA carboxylase and propionyl-CoA carboxylase as well as phosphoenolpyruvate carboxylase. The specific enzyme activities of the carboxylases were high enough to explain the autotrophic growth rate via the 3-hydroxypropionate cycle. Extracts catalyzed the CO2-, MgATP-, and NADPH-dependent conversion of acetyl-CoA to 3-hydroxypropionate via malonyl-CoA and the conversion of this intermediate to succinate via propionyl-CoA. The labelled intermediates were detected in vitro with either 14CO2 or [14C]acetyl-CoA as precursor. These reactions are part of the 3-hydroxypropionate cycle, the autotrophic pathway proposed for C. aurantiacus. The investigation was extended to the autotrophic archaea Sulfolobus metallicus and Acidianus infernus, which showed acetyl-CoA and propionyl-CoA carboxylase activities in extracts of autotrophically grown cells. Acetyl-CoA carboxylase activity is unexpected in archaea since they do not contain fatty acids in their membranes. These aerobic archaea, as well as C. aurantiacus, were screened for biotin-containing proteins by the avidin-peroxidase test. They contained large amounts of a small biotin-carrying protein, which is most likely part of the acetyl-CoA and propionyl-CoA carboxylases. Other archaea reported to use one of the other known autotrophic pathways lacked such small biotin-containing proteins. These findings suggest that the aerobic autotrophic archaea M. sedula, S. metallicus, and A. infernus use a yet-to-be-defined 3-hydroxypropionate cycle for their autotrophic growth. Acetyl-CoA carboxylase and propionyl-CoA carboxylase are proposed to be the main CO2 fixation enzymes, and phosphoenolpyruvate carboxylase may have an anaplerotic function. The results also provide further support for the occurrence of the 3-hydroxypropionate cycle in C. aurantiacus.

摘要

对光合细菌嗜热栖热放线菌(Chloroflexus aurantiacus)和好氧嗜热嗜酸古菌嗜热金属球菌(Metallosphaera sedula)中的自养型二氧化碳固定途径进行了研究。在这两种生物体中,均未检测到还原性戊糖磷酸循环、还原性柠檬酸循环以及还原性乙酰辅酶A(acetyl-CoA)途径中的关键酶。然而,细胞中含有生物素依赖性乙酰辅酶A羧化酶和丙酰辅酶A羧化酶以及磷酸烯醇丙酮酸羧化酶。这些羧化酶的比酶活性足以解释通过3-羟基丙酸循环实现的自养生长速率。提取物催化了乙酰辅酶A经丙二酸单酰辅酶A向3-羟基丙酸的二氧化碳、MgATP和NADPH依赖性转化,以及该中间产物经丙酰辅酶A向琥珀酸的转化。以14CO2或[14C]乙酰辅酶A作为前体,在体外检测到了标记的中间产物。这些反应是3-羟基丙酸循环的一部分,3-羟基丙酸循环是为嗜热栖热放线菌提出的自养途径。该研究扩展至自养古菌嗜热金属硫化叶菌(Sulfolobus metallicus)和嗜热嗜酸栖热嗜酸菌(Acidianus infernus),它们在自养生长细胞的提取物中表现出乙酰辅酶A和丙酰辅酶A羧化酶活性。乙酰辅酶A羧化酶活性在古菌中是出乎意料的,因为它们的细胞膜中不含有脂肪酸。通过抗生物素蛋白-过氧化物酶试验对这些好氧古菌以及嗜热栖热放线菌进行了含生物素蛋白的筛选。它们含有大量的一种携带生物素的小蛋白,该蛋白很可能是乙酰辅酶A和丙酰辅酶A羧化酶的一部分。据报道使用其他已知自养途径之一的其他古菌缺乏这种含生物素的小蛋白。这些发现表明,好氧自养古菌嗜热金属球菌、嗜热金属硫化叶菌和嗜热嗜酸栖热嗜酸菌利用一种尚未明确的3-羟基丙酸循环进行自养生长。乙酰辅酶A羧化酶和丙酰辅酶A羧化酶被认为是主要的二氧化碳固定酶,磷酸烯醇丙酮酸羧化酶可能具有回补功能。这些结果也为嗜热栖热放线菌中3-羟基丙酸循环的存在提供了进一步的支持。

相似文献

3
Assaying for the 3-hydroxypropionate cycle of carbon fixation.检测碳固定的3-羟基丙酸循环。
Methods Enzymol. 2005;397:212-21. doi: 10.1016/S0076-6879(05)97012-2.
5
Autotrophic CO2 fixation pathways in archaea (Crenarchaeota).古菌(泉古菌门)中的自养二氧化碳固定途径。
Arch Microbiol. 2003 Mar;179(3):160-73. doi: 10.1007/s00203-002-0512-5. Epub 2003 Feb 12.

引用本文的文献

3
Biosynthetic Pathway and Metabolic Engineering of Succinic Acid.琥珀酸的生物合成途径与代谢工程
Front Bioeng Biotechnol. 2022 Mar 8;10:843887. doi: 10.3389/fbioe.2022.843887. eCollection 2022.
7
Biocatalysis for the application of CO2 as a chemical feedstock.用于将二氧化碳作为化学原料应用的生物催化。
Beilstein J Org Chem. 2015 Dec 1;11:2370-87. doi: 10.3762/bjoc.11.259. eCollection 2015.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验