Suppr超能文献

鉴定橙色颤螺旋菌中自养 3-羥基丙酸盐 CO2 固定循环的缺失步骤。

Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus.

机构信息

Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21317-22. doi: 10.1073/pnas.0908356106. Epub 2009 Dec 2.

Abstract

The phototrophic bacterium Chloroflexus aurantiacus uses a yet unsolved 3-hydroxypropionate cycle for autotrophic CO(2) fixation. It starts from acetyl-CoA, with acetyl-CoA and propionyl-CoA carboxylases acting as carboxylating enzymes. In a first cycle, (S)-malyl-CoA is formed from acetyl-CoA and 2 molecules of bicarbonate. (S)-Malyl-CoA cleavage releases the CO(2) fixation product glyoxylate and regenerates the starting molecule acetyl-CoA. Here we complete the missing steps devoted to glyoxylate assimilation. In a second cycle, glyoxylate is combined with propionyl-CoA, an intermediate of the first cycle, to form beta-methylmalyl-CoA. This condensation is followed by dehydration to mesaconyl-C1-CoA. An unprecedented CoA transferase catalyzes the intramolecular transfer of the CoA moiety to the C4 carboxyl group of mesaconate. Mesaconyl-C4-CoA then is hydrated by an enoyl-CoA hydratase to (S)-citramalyl-CoA. (S)-Citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by a tri-functional lyase, which previously cleaved (S)-malyl-CoA and formed beta-methylmalyl-CoA. Thus, the enigmatic disproportionation of glyoxylate and propionyl-CoA into acetyl-CoA and pyruvate is solved in an elegant and economic way requiring only 3 additional enzymes. The whole bicyclic pathway results in pyruvate formation from 3 molecules of bicarbonate and involves 19 steps but only 13 enzymes. Elements of the 3-hydroxypropionate cycle may be used for the assimilation of small organic molecules. The 3-hydroxypropionate cycle is compared with the Calvin-Benson-Bassham cycle and other autotrophic pathways.

摘要

光养细菌绿屈挠菌利用一个尚未解决的 3-羟基丙酸盐循环进行自养 CO2 固定。它从乙酰辅酶 A 开始,乙酰辅酶 A 和丙酰辅酶 A 羧化酶作为羧化酶。在第一个循环中,(S)-苹果酰辅酶 A 由乙酰辅酶 A 和 2 个分子的碳酸氢盐形成。(S)-苹果酰辅酶 A 裂解释放 CO2 固定产物乙醛酸,并再生起始分子乙酰辅酶 A。在这里,我们完成了缺失的步骤,致力于乙醛酸同化。在第二个循环中,乙醛酸与丙酰辅酶 A(第一循环的中间体)结合形成β-甲基丙二酰辅酶 A。该缩合后脱水形成中康酸 C1-辅酶 A。一种前所未有的辅酶转移酶催化辅酶部分的分子内转移到中康酸的 C4 羧基上。然后,中康酰基 C4-辅酶 A 被烯酰辅酶 A 水合酶水合生成(S)-柠檬酸基辅酶 A。(S)-柠檬酸基辅酶 A 被一种三功能裂解酶裂解为乙酰辅酶 A 和丙酮酸,该裂解酶先前裂解(S)-苹果酰辅酶 A 并形成β-甲基丙二酰辅酶 A。因此,乙醛酸和丙酰辅酶 A 神秘地歧化为乙酰辅酶 A 和丙酮酸,以一种优雅而经济的方式解决,只需要 3 个额外的酶。整个双环途径导致从 3 个分子的碳酸氢盐形成丙酮酸,涉及 19 个步骤,但只有 13 个酶。3-羟基丙酸盐循环的元素可用于小分子的同化。3-羟基丙酸盐循环与卡尔文-本森-巴斯汉姆循环和其他自养途径进行了比较。

相似文献

4
Assaying for the 3-hydroxypropionate cycle of carbon fixation.检测碳固定的3-羟基丙酸循环。
Methods Enzymol. 2005;397:212-21. doi: 10.1016/S0076-6879(05)97012-2.

引用本文的文献

4
Propionate metabolism in .丙酸代谢在……中
Front Microbiol. 2025 Feb 12;16:1545849. doi: 10.3389/fmicb.2025.1545849. eCollection 2025.
8
The biotechnological potential of the phylum.门的生物技术潜力。
Appl Environ Microbiol. 2024 Jun 18;90(6):e0175623. doi: 10.1128/aem.01756-23. Epub 2024 May 6.

本文引用的文献

7
Microbiology. A fifth pathway of carbon fixation.微生物学。碳固定的第五条途径。
Science. 2007 Dec 14;318(5857):1732-3. doi: 10.1126/science.1152209.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验