Suppr超能文献

用于发现生物活性天然产物的虚拟筛选

Virtual screening for the discovery of bioactive natural products.

作者信息

Rollinger Judith M, Stuppner Hermann, Langer Thierry

机构信息

Institute of Pharmacy/Pharmacognosy, Leopold-Franzens University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria.

出版信息

Prog Drug Res. 2008;65:211, 213-49. doi: 10.1007/978-3-7643-8117-2_6.

Abstract

In this survey the impact of the virtual screening concept is discussed in the field of drug discovery from nature. Confronted by a steadily increasing number of secondary metabolites and a growing number of molecular targets relevant in the therapy of human disorders, the huge amount of information needs to be handled. Virtual screening filtering experiments already showed great promise for dealing with large libraries of potential bioactive molecules. It can be utilized for browsing databases for molecules fitting either an established pharmacophore model or a three dimensional (3D) structure of a macromolecular target. However, for the discovery of natural lead candidates the application of this in silico tool has so far almost been neglected. There are several reasons for that. One concerns the scarce availability of natural product (NP) 3D databases in contrast to synthetic libraries; another reason is the problematic compatibility of NPs with modern robotized high throughput screening (HTS) technologies. Further arguments deal with the incalculable availability of pure natural compounds and their often too complex chemistry. Thus research in this field is time-consuming, highly complex, expensive and ineffective. Nevertheless, naturally derived compounds are among the most favorable source of drug candidates. A more rational and economic search for new lead structures from nature must therefore be a priority in order to overcome these problems. Here we demonstrate some basic principles, requirements and limitations of virtual screening strategies and support their applicability in NP research with already performed studies. A sensible exploitation of the molecular diversity of secondary metabolites however asks for virtual screening concepts that are interfaced with well-established strategies from classical pharmacognosy that are used in an effort to maximize their efficacy in drug discovery. Such integrated virtual screening workflows are outlined here and shall help to motivate NP researchers to dare a step towards this powerful in silico tool.

摘要

在本次调查中,我们讨论了虚拟筛选概念在天然药物发现领域的影响。面对次生代谢物数量不断增加以及与人类疾病治疗相关的分子靶点数量不断增多的情况,需要处理海量信息。虚拟筛选过滤实验已显示出在处理大量潜在生物活性分子库方面具有巨大潜力。它可用于在数据库中浏览符合既定药效团模型或大分子靶点三维(3D)结构的分子。然而,到目前为止,在发现天然先导候选物方面,这种计算机辅助工具的应用几乎被忽视了。原因有几个。一方面,与合成库相比,天然产物(NP)3D数据库的可用性稀缺;另一个原因是NP与现代机器人高通量筛选(HTS)技术的兼容性存在问题。其他问题还包括纯天然化合物难以估量的可得性及其往往过于复杂的化学性质。因此,该领域的研究耗时、高度复杂、成本高昂且效率低下。尽管如此,天然衍生化合物仍是最有利的药物候选物来源之一。因此,为克服这些问题,更合理、经济地从天然物质中寻找新的先导结构必须成为优先事项。在此,我们展示了虚拟筛选策略的一些基本原理、要求和局限性,并通过已开展的研究支持其在NP研究中的适用性。然而,要明智地利用次生代谢物的分子多样性,就需要虚拟筛选概念与经典生药学中成熟的策略相结合,以努力在药物发现中最大化其功效。本文概述了这种集成的虚拟筛选工作流程,希望能促使NP研究人员朝着这个强大的计算机辅助工具迈出一步。

相似文献

1
Virtual screening for the discovery of bioactive natural products.
Prog Drug Res. 2008;65:211, 213-49. doi: 10.1007/978-3-7643-8117-2_6.
2
Virtual screening and its integration with modern drug design technologies.
Curr Med Chem. 2008;15(1):37-46. doi: 10.2174/092986708783330683.
3
High impact technologies for natural products screening.
Prog Drug Res. 2008;65:175, 177-210. doi: 10.1007/978-3-7643-8117-2_5.
4
Predictive QSAR modeling workflow, model applicability domains, and virtual screening.
Curr Pharm Des. 2007;13(34):3494-504. doi: 10.2174/138161207782794257.
5
Integrated in silico tools for exploiting the natural products' bioactivity.
Planta Med. 2006 Jun;72(8):671-8. doi: 10.1055/s-2006-941506. Epub 2006 Jun 19.
6
Strategies for efficient lead structure discovery from natural products.
Curr Med Chem. 2006;13(13):1491-507. doi: 10.2174/092986706777442075.
8
Identification of bioactive natural products by pharmacophore-based virtual screening.
Curr Pharm Des. 2010 May;16(15):1666-81. doi: 10.2174/138161210791164072.
9
From drug target to leads--sketching a physicochemical pathway for lead molecule design in silico.
Curr Pharm Des. 2007;13(34):3454-70. doi: 10.2174/138161207782794220.
10
Recent development and application of virtual screening in drug discovery: an overview.
Curr Pharm Des. 2004;10(9):1011-33. doi: 10.2174/1381612043452721.

引用本文的文献

1
GDP-mannose pyrophosphorylase is an efficient target in for citrus canker control.
Microbiol Spectr. 2024 Jun 4;12(6):e0367323. doi: 10.1128/spectrum.03673-23. Epub 2024 May 9.
3
Protein-Ligand Docking in the Machine-Learning Era.
Molecules. 2022 Jul 18;27(14):4568. doi: 10.3390/molecules27144568.
4
Feature Reduction for Molecular Similarity Searching Based on Autoencoder Deep Learning.
Biomolecules. 2022 Mar 27;12(4):508. doi: 10.3390/biom12040508.
5
MolData, a molecular benchmark for disease and target based machine learning.
J Cheminform. 2022 Mar 7;14(1):10. doi: 10.1186/s13321-022-00590-y.
6
A Structural Approach to Anti-Virulence: A Discovery Pipeline.
Microorganisms. 2021 Dec 4;9(12):2514. doi: 10.3390/microorganisms9122514.
7
Mapping the intellectual structure of the coronavirus field (2000-2020): a co-word analysis.
Scientometrics. 2021;126(8):6625-6657. doi: 10.1007/s11192-021-04038-2. Epub 2021 Jun 15.
8
Chemical constituents from coconut waste and their evaluation as potential antiviral agents against SARS-CoV-2.
S Afr J Bot. 2021 Sep;141:278-289. doi: 10.1016/j.sajb.2021.05.018. Epub 2021 May 28.
9
Main protease inhibitors and drug surface hotspots for the treatment of COVID-19: A drug repurposing and molecular docking approach.
Biomed Pharmacother. 2021 Aug;140:111742. doi: 10.1016/j.biopha.2021.111742. Epub 2021 May 18.
10
Benzoquinoline Derivatives: A Straightforward and Efficient Route to Antibacterial and Antifungal Agents.
Pharmaceuticals (Basel). 2021 Apr 6;14(4):335. doi: 10.3390/ph14040335.

本文引用的文献

1
Statistical Investigation into the Structural Complementarity of Natural Products and Synthetic Compounds.
Angew Chem Int Ed Engl. 1999 Mar 1;38(5):643-647. doi: 10.1002/(SICI)1521-3773(19990301)38:5<643::AID-ANIE643>3.0.CO;2-G.
2
Pharmacophore modelling: applications in drug discovery.
Expert Opin Drug Discov. 2006 Aug;1(3):261-7. doi: 10.1517/17460441.1.3.261.
4
Parallel screening and activity profiling with HIV protease inhibitor pharmacophore models.
J Chem Inf Model. 2007 Mar-Apr;47(2):563-71. doi: 10.1021/ci600321m.
5
Virtual screening of Chinese herbs with Random Forest.
J Chem Inf Model. 2007 Mar-Apr;47(2):264-78. doi: 10.1021/ci600289v.
7
Natural products as sources of new drugs over the last 25 years.
J Nat Prod. 2007 Mar;70(3):461-77. doi: 10.1021/np068054v. Epub 2007 Feb 20.
8
Structure-based pharmacophore identification of new chemical scaffolds as non-nucleoside reverse transcriptase inhibitors.
J Chem Inf Model. 2007 Mar-Apr;47(2):557-62. doi: 10.1021/ci600320q. Epub 2007 Feb 3.
9
10
High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening.
J Comput Aided Mol Des. 2006 Dec;20(12):703-15. doi: 10.1007/s10822-006-9066-y. Epub 2006 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验