Suppr超能文献

预测性定量构效关系(QSAR)建模工作流程、模型适用域及虚拟筛选。

Predictive QSAR modeling workflow, model applicability domains, and virtual screening.

作者信息

Tropsha Alexander, Golbraikh Alexander

机构信息

Laboratory for Molecular Modeling and, Carolina Center for Exploratory Cheminformatics Research, CB 7360 School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Curr Pharm Des. 2007;13(34):3494-504. doi: 10.2174/138161207782794257.

Abstract

Quantitative Structure Activity Relationship (QSAR) modeling has been traditionally applied as an evaluative approach, i.e., with the focus on developing retrospective and explanatory models of existing data. Model extrapolation was considered if only in hypothetical sense in terms of potential modifications of known biologically active chemicals that could improve compounds' activity. This critical review re-examines the strategy and the output of the modern QSAR modeling approaches. We provide examples and arguments suggesting that current methodologies may afford robust and validated models capable of accurate prediction of compound properties for molecules not included in the training sets. We discuss a data-analytical modeling workflow developed in our laboratory that incorporates modules for combinatorial QSAR model development (i.e., using all possible binary combinations of available descriptor sets and statistical data modeling techniques), rigorous model validation, and virtual screening of available chemical databases to identify novel biologically active compounds. Our approach places particular emphasis on model validation as well as the need to define model applicability domains in the chemistry space. We present examples of studies where the application of rigorously validated QSAR models to virtual screening identified computational hits that were confirmed by subsequent experimental investigations. The emerging focus of QSAR modeling on target property forecasting brings it forward as predictive, as opposed to evaluative, modeling approach.

摘要

定量构效关系(QSAR)建模传统上一直被用作一种评估方法,即专注于开发现有数据的回顾性和解释性模型。仅在假设意义上考虑模型外推,即针对已知生物活性化学物质的潜在修饰,这些修饰可能会提高化合物的活性。这篇批判性综述重新审视了现代QSAR建模方法的策略和结果。我们提供的例子和论据表明,当前的方法可能会提供强大且经过验证的模型,能够准确预测训练集中未包含分子的化合物性质。我们讨论了我们实验室开发的一种数据分析建模工作流程,该流程包含用于组合QSAR模型开发的模块(即使用可用描述符集的所有可能二元组合和统计数据建模技术)、严格的模型验证以及对可用化学数据库进行虚拟筛选以识别新型生物活性化合物。我们的方法特别强调模型验证以及在化学空间中定义模型适用域的必要性。我们展示了一些研究实例,其中将经过严格验证的QSAR模型应用于虚拟筛选,识别出的计算命中物随后通过实验研究得到了证实。QSAR建模对目标性质预测的新关注使其成为一种预测性而非评估性的建模方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验