Suppr超能文献

局部自组装机制是近端和远端切断轴突末端分别转化为功能性和异常生长锥的基础。

Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones.

作者信息

Erez Hadas, Spira Micha E

机构信息

Department of Neurobiology, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

J Comp Neurol. 2008 Mar 1;507(1):1019-30. doi: 10.1002/cne.21522.

Abstract

Following axotomy, both the proximal and distal cut axonal ends transform into growth cones (GCs). Whereas the GCs formed by the tip of the proximal segment branch to form neurites, the structure formed by the distal cut end fails to grow. The mechanisms underlying the formation of an aberrant GC by the distal cut end are not understood. Earlier we described the cascade that transforms the tip of the proximal cut axon into a GC. This involves microtubule (MT) polar reorientation, which culminates in the formation of two MT-based vesicle traps, one for Golgi-derived vesicles and the other that retains retrogradely transported vesicles. The formation of these traps is the outcome of local interactions between dynamically repolymerizing MTs and molecular motors. The concentration of Golgi-derived vesicles in the plus-end trap is essential for the successful generation of a functional GC. By using online confocal imaging of transected cultured Aplysia neurons, we analyzed here the restructuring of the distal cut end after axotomy. We found that initially the proximal and distal cut ends undergo identical alterations. Nevertheless, in contrast to the proximal end, the distal cut axon forms only a minus-end MT-based trap that concentrates endocytotic vesicles driven by minus-end oriented motors. Whereas the MTs forming the trap polymerize pointing their plus-ends centrifugally to form finger-like protrusions, the trapped vesicles cannot translocate out to fuse with the plasma membrane. Thus, the structure formed at the distal cut axon is incompetent to support growth processes.

摘要

轴突切断后,近端和远端切断的轴突末端都会转变为生长锥(GCs)。近端段末端形成的生长锥会分支形成神经突,而远端切断端形成的结构则无法生长。远端切断端形成异常生长锥的潜在机制尚不清楚。此前我们描述了将近端切断轴突末端转变为生长锥的级联反应。这涉及微管(MT)极性重新定向,最终形成两个基于微管的囊泡陷阱,一个用于高尔基体衍生的囊泡,另一个用于保留逆向运输的囊泡。这些陷阱的形成是动态重新聚合的微管与分子马达之间局部相互作用的结果。正端陷阱中高尔基体衍生囊泡的浓度对于成功生成功能性生长锥至关重要。通过对切断的培养海兔神经元进行在线共聚焦成像,我们在此分析了轴突切断后远端切断端的重组情况。我们发现,最初近端和远端切断端会发生相同的改变。然而,与近端不同的是,远端切断的轴突仅形成一个基于负端微管的陷阱,该陷阱会聚集由负端定向马达驱动的内吞囊泡。构成陷阱的微管聚合时,其正端离心指向形成手指状突起,但被困的囊泡无法向外转运与质膜融合。因此,在远端切断轴突处形成的结构无法支持生长过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验