Suppr超能文献

轴突损伤通过TACC和双皮质素样激酶触发EFA-6介导的轴突微管不稳定。

Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase.

作者信息

Chen Lizhen, Chuang Marian, Koorman Thijs, Boxem Mike, Jin Yishi, Chisholm Andrew D

机构信息

Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.

University of California, San Diego, La Jolla, United States.

出版信息

Elife. 2015 Sep 4;4:e08695. doi: 10.7554/eLife.08695.

Abstract

Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury.

摘要

轴突损伤会引发轴突细胞骨架的一系列变化,这些变化是有效轴突再生的先决条件。在秀丽隐杆线虫中,ARF-6交换因子(EFA-6)这种信号蛋白是轴突再生的一种强大的内在抑制剂。在这里,我们表明轴突损伤会引发依赖EFA-6的轴突微管(MT)动力学的快速抑制,并伴随着EFA-6的重新定位。EFA-6的重新定位和轴突再生抑制需要其原本无序的N端结构域中一个保守的18个氨基酸的基序。EFA-6的N端与微管相关蛋白TAC-1/转化酸性卷曲螺旋蛋白以及ZYG-8/双皮质素样激酶结合,这两种蛋白都是再生生长锥形成所必需的,并且在EFA-6的下游发挥作用。损伤后,TAC-1和EFA-6会短暂地重新定位于由微管负端结合蛋白PTRN-1/帕托宁标记的位点。我们提出,EFA-6作为轴突微管动力学的双功能损伤反应调节因子,在稳态下作用于细胞皮层,在损伤后作用于微管负端。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6703/4596636/ecbfb01ab8cd/elife08695f001.jpg

相似文献

2
The microtubule minus-end-binding protein patronin/PTRN-1 is required for axon regeneration in C. elegans.
Cell Rep. 2014 Nov 6;9(3):874-83. doi: 10.1016/j.celrep.2014.09.054. Epub 2014 Oct 23.
3
Axon regeneration pathways identified by systematic genetic screening in C. elegans.
Neuron. 2011 Sep 22;71(6):1043-57. doi: 10.1016/j.neuron.2011.07.009. Epub 2011 Sep 21.
4
Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans.
F1000Res. 2016 Apr 27;5. doi: 10.12688/f1000research.8197.1. eCollection 2016.
5
ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule function throughout the cell cycle of C. elegans embryos.
J Cell Sci. 2007 Aug 15;120(Pt 16):2963-73. doi: 10.1242/jcs.004812. Epub 2007 Jul 31.
7
Cytoskeletal dynamics in Caenorhabditis elegans axon regeneration.
Annu Rev Cell Dev Biol. 2013;29:271-97. doi: 10.1146/annurev-cellbio-101512-122311. Epub 2013 Jul 10.
9
Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration.
Dev Cell. 2012 Oct 16;23(4):716-28. doi: 10.1016/j.devcel.2012.08.010. Epub 2012 Sep 20.

引用本文的文献

1
The microtubule regulator EFA-6 forms cortical foci dependent on its intrinsically disordered region and interactions with tubulins.
Cell Rep. 2024 Oct 22;43(10):114776. doi: 10.1016/j.celrep.2024.114776. Epub 2024 Sep 20.
2
Molecular regulation of axon termination in mechanosensory neurons.
Development. 2024 Sep 1;151(17). doi: 10.1242/dev.202945. Epub 2024 Sep 13.
3
KLP-7/Kinesin-13 orchestrates axon-dendrite checkpoints for polarized trafficking in neurons.
Mol Biol Cell. 2024 Sep 1;35(9):ar115. doi: 10.1091/mbc.E23-08-0335. Epub 2024 Jul 10.
5
The response of Dual-leucine zipper kinase (DLK) to nocodazole: Evidence for a homeostatic cytoskeletal repair mechanism.
PLoS One. 2024 Apr 4;19(4):e0300539. doi: 10.1371/journal.pone.0300539. eCollection 2024.
6
MicroRNA-9 promotes axon regeneration of mauthner-cell in zebrafish via her6/ calcium activity pathway.
Cell Mol Life Sci. 2024 Feb 27;81(1):104. doi: 10.1007/s00018-024-05117-2.
7
Molecular mechanisms of neurite regeneration and repair: insights from C. elegans and Drosophila.
Cell Regen. 2023 Apr 2;12(1):12. doi: 10.1186/s13619-022-00155-2.
8
Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing.
Nat Methods. 2023 Apr;20(4):590-599. doi: 10.1038/s41592-023-01804-3. Epub 2023 Mar 16.

本文引用的文献

1
Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury.
Science. 2015 Apr 17;348(6232):347-52. doi: 10.1126/science.aaa2958. Epub 2015 Mar 12.
2
Kinesin-1-powered microtubule sliding initiates axonal regeneration in Drosophila cultured neurons.
Mol Biol Cell. 2015 Apr 1;26(7):1296-307. doi: 10.1091/mbc.E14-10-1423. Epub 2015 Feb 5.
3
The microtubule minus-end-binding protein patronin/PTRN-1 is required for axon regeneration in C. elegans.
Cell Rep. 2014 Nov 6;9(3):874-83. doi: 10.1016/j.celrep.2014.09.054. Epub 2014 Oct 23.
4
An assay to image neuronal microtubule dynamics in mice.
Nat Commun. 2014 Sep 12;5:4827. doi: 10.1038/ncomms5827.
5
Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury.
Exp Neurol. 2014 Nov;261:97-108. doi: 10.1016/j.expneurol.2014.06.020. Epub 2014 Jul 3.
6
Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development.
Neuron. 2014 Jun 4;82(5):1058-73. doi: 10.1016/j.neuron.2014.04.019.
7
Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5860-5. doi: 10.1073/pnas.1404133111. Epub 2014 Mar 26.
8
Intrinsically disordered proteins and intrinsically disordered protein regions.
Annu Rev Biochem. 2014;83:553-84. doi: 10.1146/annurev-biochem-072711-164947. Epub 2014 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验