Pathak Hemal R, Weissinger Florian, Terunuma Miho, Carlson Gregory C, Hsu Fu-Chun, Moss Stephen J, Coulter Douglas A
Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
J Neurosci. 2007 Dec 19;27(51):14012-22. doi: 10.1523/JNEUROSCI.4390-07.2007.
GABA(A) receptor-mediated inhibition depends on the maintenance of intracellular Cl- concentration ([Cl-]in) at low levels. In neurons in the developing CNS, [Cl-]in is elevated, E(GABA) is depolarizing, and GABA consequently is excitatory. Depolarizing GABAergic synaptic responses may be recapitulated in various neuropathological conditions, including epilepsy. In the present study, rat hippocampal dentate granule cells were recorded using gramicidin perforated patch techniques at varying times (1-60 d) after an epileptogenic injury, pilocarpine-induced status epilepticus (STEP). In normal, non-epileptic animals, these strongly inhibited dentate granule cells act as a gate, regulating hippocampal excitation, controlling seizure initiation and/or propagation. For 2 weeks after STEP, we found that E(GABA) was positively shifted in granule cells. This shift in E(GABA) altered synaptic integration, increased granule cell excitability, and resulted in compromised "gate" function of the dentate gyrus. E(GABA) recovered to control values at longer latencies post-STEP (2-8 weeks), when animals had developed epilepsy. During this period of shifted E(GABA), expression of the Cl- extruding K+/Cl- cotransporter, KCC2 was decreased. Application of the KCC2 blocker, furosemide, to control neurons mimicked E(GABA) shifts evident in granule cells post-STEP. Furthermore, post-STEP and furosemide effects interacted occlusively, both on E(GABA) in granule cells, and on gatekeeper function of the dentate gyrus. This suggests a shared mechanism, reduced KCC2 function. These findings demonstrate that decreased expression of KCC2 persists for weeks after an epileptogenic injury, reducing inhibitory efficacy and enhancing dentate granule cell excitability. This pathophysiological process may constitute a significant mechanism linking injury to the subsequent development of epilepsy.
GABA(A)受体介导的抑制作用取决于细胞内氯离子浓度([Cl-]in)维持在低水平。在发育中的中枢神经系统神经元中,[Cl-]in升高,E(GABA)呈去极化状态,因此GABA具有兴奋性。去极化的GABA能突触反应可能在包括癫痫在内的各种神经病理状况中重现。在本研究中,采用短杆菌肽穿孔膜片钳技术,在致痫性损伤(毛果芸香碱诱导的癫痫持续状态,即STEP)后的不同时间点(1 - 60天)记录大鼠海马齿状颗粒细胞。在正常的非癫痫动物中,这些强烈抑制性的齿状颗粒细胞起到闸门的作用,调节海马的兴奋性,控制癫痫发作的起始和/或传播。在STEP后2周,我们发现颗粒细胞中的E(GABA)正向偏移。E(GABA)的这种偏移改变了突触整合,增加了颗粒细胞的兴奋性,并导致齿状回的“闸门”功能受损。在STEP后较长时间(2 - 8周),当动物发生癫痫时,E(GABA)恢复到对照值。在E(GABA)偏移的这段时间里,氯离子外向转运体K+/Cl-共转运体KCC2的表达降低。将KCC2阻断剂呋塞米应用于对照神经元,可模拟STEP后颗粒细胞中明显的E(GABA)偏移。此外,STEP后和呋塞米的作用在颗粒细胞的E(GABA)以及齿状回的闸门功能上相互作用,表现为完全性阻塞。这表明存在一个共同的机制,即KCC2功能降低。这些发现表明,致痫性损伤后KCC2表达降低持续数周,降低了抑制效能并增强了齿状颗粒细胞的兴奋性。这种病理生理过程可能是将损伤与随后癫痫发展联系起来的一个重要机制。