Ang Chyze W, Carlson Gregory C, Coulter Douglas A
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
J Neurosci. 2005 Oct 19;25(42):9567-80. doi: 10.1523/JNEUROSCI.2992-05.2005.
Hippocampal CA1 pyramidal neurons receive intrahippocampal and extrahipppocampal inputs during theta cycle, whose relative timing and magnitude regulate the probability of CA1 pyramidal cell spiking. Extrahippocampal inputs, giving rise to the primary theta dipole in CA1 stratum lacunosum moleculare, are conveyed by the temporoammonic pathway. The temporoammonic pathway impinging onto the CA1 distal apical dendritic tuft is the most electrotonically distant from the perisomatic region yet is critical in regulating CA1 place cell activity during theta cycles. How does local hippocampal circuitry regulate the integration of this essential, but electrotonically distant, input within the theta period? Using whole-cell somatic recording and voltage-sensitive dye imaging with simultaneous dendritic recording of CA1 pyramidal cell responses, we demonstrate that temporoammonic EPSPs are normally compartmentalized to the apical dendritic tuft by feedforward inhibition. However, when this input is preceded at a one-half theta cycle interval by proximally targeted Schaffer collateral activity, temporoammonic EPSPs propagate to the soma through a joint, codependent mechanism involving activation of Schaffer-specific NMDA receptors and presynaptic inhibition of GABAergic terminals. These afferent interactions, tuned for synaptic inputs arriving one-half theta interval apart, are in turn modulated by feedback inhibition initiated via axon collaterals of pyramidal cells. Therefore, CA1 circuit integration of excitatory inputs endows the CA1 principal cell with a novel property: the ability to function as a temporally specific "AND" gate that provides for sequence-dependent readout of distal inputs.
海马体CA1区锥体细胞在θ节律周期内接收海马体内和海马体外的输入,其相对时间和强度调节CA1锥体细胞放电的概率。海马体外的输入在CA1分子层隙状部产生主要的θ偶极子,由颞叶-海马通路传导。投射到CA1区远端顶端树突丛的颞叶-海马通路在电突触距离上离胞体区域最远,但在调节θ节律周期内CA1位置细胞的活动中起关键作用。局部海马回路如何在θ节律周期内调节这种重要但电突触距离较远的输入的整合?通过全细胞膜片钳记录和电压敏感染料成像,同时对CA1锥体细胞反应进行树突记录,我们证明,颞叶-海马通路兴奋性突触后电位(EPSP)通常通过前馈抑制作用被分隔在顶端树突丛。然而,当这种输入在半个θ节律周期的间隔之前出现近端靶向的谢弗侧支活动时,颞叶-海马通路EPSP通过一种联合的、相互依赖的机制传播到胞体,该机制涉及谢弗特异性N-甲基-D-天冬氨酸(NMDA)受体的激活和γ-氨基丁酸(GABA)能终末的突触前抑制。这些传入相互作用针对相隔半个θ节律间隔到达的突触输入进行调整,反过来又受到锥体细胞轴突侧支引发的反馈抑制的调节。因此,CA1区兴奋性输入的回路整合赋予CA1主细胞一种新特性:作为一个时间特异性“与”门发挥作用的能力,该“与’门为远端输入提供序列依赖性读出。