Shirahata Mitsuaki, Iwao-Koizumi Kyoko, Saito Sakae, Ueno Noriko, Oda Masashi, Hashimoto Nobuo, Takahashi Jun A, Kato Kikuya
Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Clin Cancer Res. 2007 Dec 15;13(24):7341-56. doi: 10.1158/1078-0432.CCR-06-2789.
Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling.
The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study.
Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival.
Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.
当前基于形态学的胶质瘤分类方法不能充分反映胶质瘤复杂的生物学特性,从而限制了其预后判断能力。在本研究中,我们聚焦于间变性少突胶质细胞瘤和胶质母细胞瘤,这两种肿瘤通常具有不同的临床病程。我们的目标是构建一个基于基因表达谱的临床实用分子诊断系统。
通过PCR芯片检测了32例患者中3456个基因的表达情况,其中12例和20例分别患有预后不同的间变性少突胶质细胞瘤和胶质母细胞瘤。除了无监督方法外,我们还使用加权投票算法进行监督分析,以构建区分间变性少突胶质细胞瘤和胶质母细胞瘤的诊断系统。通过留一法交叉验证评估该系统的诊断准确性。在先前一项研究的基于微阵列的50例恶性胶质瘤数据集上测试其临床实用性。
无监督分析显示这两种肿瘤类别之间存在不同的整体基因表达模式。一个监督二元分类模型在使用168个诊断基因进行留一法交叉验证时显示出100%(95%置信区间,89.4 - 100%)的诊断准确性。应用于先前研究的基因表达数据集时,我们的模型与预后的相关性优于组织学诊断,并且与原始文章中用于这些组织学上有争议的胶质瘤的分子分类方案也显示出96.6%(29例中的28例)的一致性。此外,我们观察到具有间变性少突胶质细胞瘤分子特征的组织学诊断为胶质母细胞瘤的样本往往与更长的生存期相关。
我们的分子诊断系统显示出可重复的临床实用性和预后能力,优于恶性胶质瘤的传统组织病理学诊断。