Suppr超能文献

基于个体的模型结合交通方式和地点的实际数据在大流行性流感中的应用。

Application of an individual-based model with real data for transportation mode and location to pandemic influenza.

作者信息

Ohkusa Yasushi, Sugawara Tamie

机构信息

Infectious Disease Surveillance Center, National Institution of Infectious Disease, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.

出版信息

J Infect Chemother. 2007 Dec;13(6):380-9. doi: 10.1007/s10156-007-0556-1. Epub 2007 Dec 25.

Abstract

Currently, an individual-based model is a basic tool for creating a plan to prepare for the outbreak of pandemic influenza. However, even if we can construct the model as finely as possible, it cannot mimic the real world precisely. Therefore, we should use real data for transportation modes and locations, and simulate the diffusion of an infectious disease into that real data. In the present study, we obtained data on the transportation modes and locations of 0.88 million persons a day in the Tokyo metropolitan area. First, we defined the location of all individuals in the data set every 6 min. Second, we determined how many people they came in contact with in their household, in each area, and on the train, and then we assumed that a certain percentage of those contacted would become infected and transmit the disease. Data for natural history and other parameters were taken from previous research. The average number of contacts in each area was 51 748 (95% confidence intervals [CI],46 846-56 650]), at home it was 246 (95% CI, 232-260), and on the train it was 91 (95% CI, 81-101). The number of newly infected people was estimated to be 3032 on day 7 and 126 951 on day 10. The geographic diffusion on day 7, the day when the earliest response would have started, expanded to the whole of the Tokyo metropolitan area. We were able to realize the speed and geographic spread of infection with the highest reality. Therefore, we can use this model for making preparedness plans.

摘要

目前,基于个体的模型是制定大流行性流感爆发应对计划的基本工具。然而,即便我们能尽可能精细地构建该模型,它也无法精确模拟现实世界。因此,我们应使用关于交通方式和地点的真实数据,并将传染病的扩散情况模拟到这些真实数据中。在本研究中,我们获取了东京都市区每日88万人的交通方式和地点数据。首先,我们每隔6分钟确定数据集中所有个体的位置。其次,我们确定他们在家庭、各个区域以及火车上接触了多少人,然后假设这些接触者中有一定比例会被感染并传播疾病。自然史和其他参数的数据取自先前的研究。每个区域的平均接触人数为51748人(95%置信区间[CI],46846 - 56650),在家中为246人(95%CI,232 - 260),在火车上为91人(95%CI,81 - 101)。估计第7天新增感染人数为3032人,第10天为126951人。在最早可能开始应对的第7天,地理扩散范围扩大到了整个东京都市区。我们能够以最高的逼真度实现感染的速度和地理传播情况。因此,我们可以使用这个模型来制定应对计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验