Suppr超能文献

通过R0敏感性分析发现疫情关键节点:东京都市区的高风险站点

Spotting Epidemic Keystones by R0 Sensitivity Analysis: High-Risk Stations in the Tokyo Metropolitan Area.

作者信息

Yashima Kenta, Sasaki Akira

机构信息

Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano, Tokyo, Japan.

出版信息

PLoS One. 2016 Sep 8;11(9):e0162406. doi: 10.1371/journal.pone.0162406. eCollection 2016.

Abstract

How can we identify the epidemiologically high-risk communities in a metapopulation network? The network centrality measure, which quantifies the relative importance of each location, is commonly utilized for this purpose. As the disease invasion condition is given from the basic reproductive ratio R0, we have introduced a novel centrality measure based on the sensitivity analysis of this R0 and shown its capability of revealing the characteristics that has been overlooked by the conventional centrality measures. The epidemic dynamics over the commute network of the Tokyo metropolitan area is theoretically analyzed by using this centrality measure. We found that, the impact of countermeasures at the largest station is more than 1,000 times stronger compare to that at the second largest station, even though the population sizes are only around 1.5 times larger. Furthermore, the effect of countermeasures at every station is strongly dependent on the existence and the number of commuters to this largest station. It is well known that the hubs are the most influential nodes, however, our analysis shows that only the largest among the network plays an extraordinary role. Lastly, we also found that, the location that is important for the prevention of disease invasion does not necessarily match the location that is important for reducing the number of infected.

摘要

我们如何在异质种群网络中识别出流行病学上的高风险社区?为此,通常会使用网络中心性度量,该度量可量化每个位置的相对重要性。由于疾病入侵条件由基本再生数(R_0)给出,我们基于对(R_0)的敏感性分析引入了一种新的中心性度量,并展示了其揭示传统中心性度量所忽略特征的能力。利用这种中心性度量,对东京都市区通勤网络上的疫情动态进行了理论分析。我们发现,即使最大车站的人口规模仅比第二大车站大1.5倍左右,在最大车站采取对策的影响比在第二大车站采取对策的影响强1000倍以上。此外,每个车站采取对策的效果很大程度上取决于前往这个最大车站的通勤者的存在情况和数量。众所周知,枢纽是最具影响力的节点,然而,我们的分析表明,只有网络中最大的枢纽发挥着非凡的作用。最后,我们还发现,对预防疾病入侵重要的位置不一定与对减少感染人数重要的位置相匹配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e19d/5015857/9b803b2e73f7/pone.0162406.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验