Støvring Henrik, Wang Mei-Cheng
Research Unit for General Practice, University of Southern Denmark, J,B, Winsløwsvej 9A, 5000 Odense C, Denmark.
BMC Med Res Methodol. 2007 Dec 20;7:53. doi: 10.1186/1471-2288-7-53.
Incidence and lifetime risk of diabetes are important public health measures. Traditionally, nonparametric estimates are obtained from survey data by means of a Nelson-Aalen estimator which requires data information on both incident events and risk sets from the entire cohort. Such data information is rarely available in real studies.
We compare two different approaches for obtaining nonparametric estimates of age-specific incidence and lifetime risk with emphasis on required assumptions. The first and novel approach only considers incident cases occurring within a fixed time window-we have termed this cohort-of-cases data-which is linked explicitly to the birth process in the past. The second approach is the usual Nelson-Aalen estimate which requires knowledge on observed time at risk for the entire cohort and their incident events. Both approaches are used on data on anti-diabetic medications obtained from Odense Pharmacoepidemiological Database, which covers a population of approximately 470,000 over the period 1993-2003. For both methods we investigate if and how incidence rates can be projected.
Both the new and standard method yield similar sigmoidal shaped estimates of the cumulative distribution function of age-specific incidence. The Nelson-Aalen estimator gives somewhat higher estimates of lifetime risk (15.65% (15.14%; 16.16%) for females, and 17.91% (17.38%; 18.44%) for males) than the estimate based on cohort-of-cases data (13.77% (13.74%; 13.81%) for females, 15.61% (15.58%; 15.65%) for males). Accordingly the projected incidence rates are higher based on the Nelson-Aalen estimate-also too high when compared to observed rates. In contrast, the cohort-of-cases approach gives projections that fit observed rates better.
The developed methodology for analysis of cohort-of-cases data has potential to become a cost-effective alternative to a traditional survey based study of incidence. To allow more general use of the methodology, more research is needed on how to relax stationarity assumptions.
糖尿病的发病率和终生风险是重要的公共卫生指标。传统上,非参数估计是通过尼尔森 - 阿伦估计器从调查数据中获得的,这需要整个队列中事件发生和风险集的相关数据信息。而在实际研究中,此类数据信息很少能获取到。
我们比较了两种获取特定年龄发病率和终生风险非参数估计的不同方法,并重点关注所需假设。第一种也是新颖的方法仅考虑在固定时间窗口内发生的发病病例——我们将此称为病例队列数据,它与过去的出生过程明确相关。第二种方法是常用的尼尔森 - 阿伦估计,它需要了解整个队列的观察到的风险时间及其发病事件。两种方法都应用于从欧登塞药物流行病学数据库获得的抗糖尿病药物数据,该数据库涵盖了1993 - 2003年期间约47万人口的数据。对于这两种方法,我们都研究了发病率是否以及如何能够进行预测。
新方法和标准方法都得出了类似的特定年龄发病率累积分布函数的S形估计。尼尔森 - 阿伦估计器得出的终生风险估计值(女性为15.65%(15.14%;16.16%),男性为17.91%(17.38%;18.44%))比基于病例队列数据的估计值(女性为13.77%(13.74%;13.81%),男性为15.61%(15.58%;15.65%))略高。因此,基于尼尔森 - 阿伦估计得出的预测发病率更高——与观察到的发病率相比也过高。相比之下,病例队列方法得出的预测与观察到的发病率拟合得更好。
所开发的用于分析病例队列数据的方法有潜力成为一种比传统基于调查的发病率研究更具成本效益的替代方法。为了使该方法能更广泛地应用,需要就如何放宽平稳性假设开展更多研究。