Pulim Vinay, Bienkowska Jadwiga, Berger Bonnie
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA.
Protein Sci. 2008 Feb;17(2):279-92. doi: 10.1110/ps.073178108. Epub 2007 Dec 20.
Identification of extracellular ligand-receptor interactions is important for drug design and the treatment of diseases. Difficulties in detecting these interactions using high-throughput experimental techniques motivate the development of computational prediction methods. We propose a novel threading algorithm, LTHREADER, which generates accurate local sequence-structure interface alignments and integrates various statistical scores and experimental binding data to predict interactions within ligand-receptor families. LTHREADER uses a profile of secondary structure and solvent accessibility predictions with residue contact maps to guide and constrain alignments. Using a decision tree classifier and low-throughput experimental data for training, it combines information inferred from statistical interaction potentials, energy functions, correlated mutations, and conserved residue pairs to predict interactions. We apply our method to cytokines, which play a central role in the development of many diseases including cancer and inflammatory and autoimmune disorders. We tested our approach on two representative families from different structural classes (all-alpha and all-beta proteins) of cytokines. In comparison with the state-of-the-art threader RAPTOR, LTHREADER generates on average 20% more accurate alignments of interacting residues. Furthermore, in cross-validation tests, LTHREADER correctly predicts experimentally confirmed interactions for a common binding mode within the 4-helical long-chain cytokine family with 75% sensitivity and 86% specificity with 40% gain in sensitivity compared to RAPTOR. For the TNF-like family our method achieves 70% sensitivity with 55% specificity with 70% gain in sensitivity. LTHREADER combines information from multiple complex templates when such data are available. When only one solved structure is available, a localized PSI-BLAST approach also outperforms standard threading methods with 25%-50% improvements in sensitivity.
识别细胞外配体 - 受体相互作用对于药物设计和疾病治疗至关重要。使用高通量实验技术检测这些相互作用存在困难,这推动了计算预测方法的发展。我们提出了一种新颖的穿线算法LTHREADER,它能生成准确的局部序列 - 结构界面比对,并整合各种统计分数和实验结合数据,以预测配体 - 受体家族内的相互作用。LTHREADER使用二级结构和溶剂可及性预测的轮廓以及残基接触图来指导和约束比对。通过使用决策树分类器和低通量实验数据进行训练,它结合了从统计相互作用势、能量函数、相关突变和保守残基对推断出的信息来预测相互作用。我们将我们的方法应用于细胞因子,细胞因子在包括癌症、炎症和自身免疫性疾病在内的许多疾病的发展中起着核心作用。我们在细胞因子的两个不同结构类别(全α和全β蛋白)的代表性家族上测试了我们的方法。与最先进的穿线器RAPTOR相比,LTHREADER生成的相互作用残基比对平均准确率高20%。此外,在交叉验证测试中,LTHREADER以75%的灵敏度和86%的特异性正确预测了4螺旋长链细胞因子家族内常见结合模式的实验证实的相互作用,与RAPTOR相比,灵敏度提高了40%。对于TNF样家族,我们的方法实现了70%的灵敏度和55%的特异性,灵敏度提高了70%。当有多个复杂模板的数据可用时,LTHREADER会结合来自多个模板的信息。当只有一个解析结构可用时,局部PSI - BLAST方法在灵敏度上也比标准穿线方法有25% - 50%的提升。