Helman Yael, Natale Frank, Sherrell Robert M, Lavigne Michèle, Starovoytov Valentin, Gorbunov Maxim Y, Falkowski Paul G
Environmental Biophysics and Molecular Ecology Program and Inorganic Analytical Laboratory, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901, USA.
Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):54-8. doi: 10.1073/pnas.0710604105. Epub 2007 Dec 27.
The evolution of multicellularity in animals required the production of extracellular matrices that serve to spatially organize cells according to function. In corals, three matrices are involved in spatial organization: (i) an organic ECM, which facilitates cell-cell and cell-substrate adhesion; (ii) a skeletal organic matrix (SOM), which facilitates controlled deposition of a calcium carbonate skeleton; and (iii) the calcium carbonate skeleton itself, which provides the structural support for the 3D organization of coral colonies. In this report, we examine the production of these three matrices by using an in vitro culturing system for coral cells. In this system, which significantly facilitates studies of coral cell physiology, we demonstrate in vitro excretion of ECM by primary (nondividing) tissue cultures of both soft (Xenia elongata) and hard (Montipora digitata) corals. There are structural differences between the ECM produced by X. elongata cell cultures and that of M. digitata, and ascorbic acid, a critical cofactor for proline hydroxylation, significantly increased the production of collagen in the ECM of the latter species. We further demonstrate in vitro production of SOM and extracellular mineralized particles in cell cultures of M. digitata. Inductively coupled plasma mass spectrometry analysis of Sr/Ca ratios revealed the particles to be aragonite. De novo calcification was confirmed by following the incorporation of (45)Ca into acid labile macromolecules. Our results demonstrate the ability of isolated, differentiated coral cells to undergo fundamental processes required for multicellular organization.
动物中多细胞性的进化需要产生细胞外基质,这些基质用于根据功能在空间上组织细胞。在珊瑚中,三种基质参与空间组织:(i)有机细胞外基质,它促进细胞间和细胞与底物的粘附;(ii)骨骼有机基质(SOM),它促进碳酸钙骨骼的受控沉积;(iii)碳酸钙骨骼本身,它为珊瑚群体的三维组织提供结构支撑。在本报告中,我们使用珊瑚细胞的体外培养系统来研究这三种基质的产生。在这个显著促进珊瑚细胞生理学研究的系统中,我们证明了软珊瑚(长指牡丹珊瑚)和硬珊瑚(指状蔷薇珊瑚)的原代(非分裂)组织培养物在体外分泌细胞外基质。长指牡丹珊瑚细胞培养物产生的细胞外基质与指状蔷薇珊瑚的细胞外基质在结构上存在差异,而脯氨酸羟化的关键辅助因子抗坏血酸显著增加了后一种物种细胞外基质中胶原蛋白的产生。我们进一步证明了指状蔷薇珊瑚细胞培养物在体外产生骨骼有机基质和细胞外矿化颗粒。对锶/钙比率的电感耦合等离子体质谱分析表明这些颗粒是文石。通过追踪(45)钙掺入酸不稳定大分子中证实了从头钙化。我们的结果证明了分离的、分化的珊瑚细胞能够经历多细胞组织所需的基本过程。