Walker D K, Scotten L N
Vivitro Systems Inc., Cardiac Development Laboratory, Royal Jubilee Hospital, Victoria, British Columbia, Canada.
Med Biol Eng Comput. 1991 Sep;29(5):457-64. doi: 10.1007/BF02442314.
A statistical pattern recognition technique is used to learn and recognise the frequency spectra of the closing sounds emitted by Bjork-Shiley convexo-concave heart valves, with and without fractured minor struts, when operating in vitro. The sounds are generated with test valves operating under a variety of conditions in a model left ventricle. It is found in the learning stage that the discriminant functions generated correctly classified almost all of the cases within the learning set. When applied to cases outside the learning set, including a recording of a clinically implanted valve, the functions correctly classify the valves. These preliminary results, for a limited number of valves, lead us to believe that the discriminant analysis of heart valve sounds is a promising noninvasive method for screening patients with implanted Bjork-Shiley convexo-concave valves.
一种统计模式识别技术被用于学习和识别在体外运行时,有或没有小支柱断裂的 Bjork-Shiley 凸凹型心脏瓣膜发出的关闭声音的频谱。这些声音是由测试瓣膜在模型左心室的各种条件下运行产生的。在学习阶段发现,所生成的判别函数几乎能正确分类学习集中的所有案例。当应用于学习集之外的案例,包括一个临床植入瓣膜的记录时,这些函数也能正确对瓣膜进行分类。对于数量有限的瓣膜的这些初步结果,使我们相信对心脏瓣膜声音进行判别分析是一种用于筛查植入 Bjork-Shiley 凸凹型瓣膜患者的有前景的非侵入性方法。