Suppr超能文献

基于概率神经网络方法的磁共振图像脑组织定量与分割

Quantification and Segmentation of Brain Tissues from MR Images: A Probabilistic Neural Network Approach.

作者信息

Wang Yue, Adalý Tülay, Kung Sun-Yuan, Szabo Zsolt

机构信息

Y. Wang is with the Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC 20064 USA, and is affiliated with the Department of Radiology, Georgetown University School of Medicine, Washington, DC 20007 USA (e-mail:

出版信息

IEEE Trans Image Process. 1998 Aug;7(8):1165-1181. doi: 10.1109/83.704309.

Abstract

This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches.

摘要

本文提出了一种基于概率神经网络的技术,用于从磁共振图像中对脑组织进行无监督定量和分割。结果表明,该问题可通过分布学习和松弛标记来解决,从而得到一种高效的方法,该方法在量化和分割组织类型数量未知且组织类型分布严重重叠的异常脑组织时可能特别有用。新技术对像素图像和上下文图像都使用了合适的统计模型,并根据模型直方图拟合和全局一致性标记来阐述该问题。通过概率自组织混合实现定量,通过概率约束松弛网络实现分割。实验结果表明了新算法的高效性和鲁棒性,并且它优于传统的基于分类的方法。

相似文献

6
A novel framework for MR image segmentation and quantification by using MedGA.利用 MedGA 实现磁共振图像分割和定量分析的新框架
Comput Methods Programs Biomed. 2019 Jul;176:159-172. doi: 10.1016/j.cmpb.2019.04.016. Epub 2019 Apr 17.

本文引用的文献

2
Application of the conditional population-mixture model to image segmentation.条件总体混合模型在图像分割中的应用。
IEEE Trans Pattern Anal Mach Intell. 1983 Apr;5(4):428-33. doi: 10.1109/tpami.1983.4767412.
3
On the foundations of relaxation labeling processes.基于松弛标记过程。
IEEE Trans Pattern Anal Mach Intell. 1983 Mar;5(3):267-87. doi: 10.1109/tpami.1983.4767390.
6
Measure fields for function approximation.用于函数逼近的测量场。
IEEE Trans Neural Netw. 1995;6(5):1081-90. doi: 10.1109/72.410353.
7
The information content of MR images.磁共振图像的信息含量。
IEEE Trans Med Imaging. 1988;7(4):368-80. doi: 10.1109/42.14521.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验