Viviani Vadim R, Silva Neto Antonio J, Arnoldi Frederico G C, Barbosa João A R G, Ohmiya Yoshihiro
Laboratório de Biotecnologia e Bioluminescência, Universidade de Sorocaba (UNISO), Universidade Federal de São Carlos, Campus de Sorocaba, Sorocaba, São Paulo, Brazil.
Photochem Photobiol. 2008 Jan-Feb;84(1):138-44. doi: 10.1111/j.1751-1097.2007.00209.x.
Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors.
甲虫荧光素酶能发出从绿色到红色的多种生物发光颜色。萤火虫荧光素酶可根据pH值和温度变化将光谱转变为红色,而叩头虫和铁路虫荧光素酶则不会。尽管对萤火虫荧光素酶进行了许多研究,但pH敏感性的起源仍远未被理解。通过比较定点诱变和建模研究,利用我们小组克隆的pH敏感荧光素酶(Macrolampis和Cratomorphus distinctus萤火虫)和pH不敏感荧光素酶(Pyrearinus termitilluminans、Phrixotrix viviani和Phrixotrix hirtus),我们在此表明,在两组荧光素酶中显著影响生物发光颜色的取代集中在223 - 235位残基之间的环中(按照Photinus pyralis序列)。227、228和229位(P. pyralis序列)的取代在两组荧光素酶中都导致显著的红移和时间偏移,表明它们参与不稳定的相互作用。建模研究表明,残基Y227和N229埋在蛋白质核心中,将该环固定到参与荧光素结合位点底部的其他结构元件上。pH值和温度的变化(在萤火虫荧光素酶中)以及该环中的点突变可能会破坏这些结构元件的相互作用,从而暴露活性位点并调节生物发光颜色。