Suppr超能文献

从理想形式预测蛋白质结构。

Prediction of protein structure from ideal forms.

作者信息

Taylor William R, Bartlett Gail J, Chelliah Vijayalakshmi, Klose Daniel, Lin Kuang, Sheldon Tom, Jonassen Inge

机构信息

Division of Mathematical Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.

出版信息

Proteins. 2008 Mar;70(4):1610-9. doi: 10.1002/prot.21913.

Abstract

For many years it has been accepted that the sequence of a protein can specify its three-dimensional structure. However, there has been limited progress in explaining how the sequence dictates its fold and no attempt to do this computationally without the use of specific structural data has ever succeeded for any protein larger than 100 residues. We describe a method that can predict complex folds up to almost 200 residues using only basic principles that do not include any elements of sequence homology. The method does not simulate the folding chain but generates many thousands of models based on an idealized representation of structure. Each rough model is scored and the best are refined. On a set of five proteins, the correct fold score well and when tested on a set of larger proteins, the correct fold was ranked highest for some proteins more than 150 residues, with others being close topological variants. All other methods that approach this level of success rely on the use of templates or fragments of known structures. Our method is unique in using a database of ideal models based on general packing rules that, in spirit, is closer to an ab initio approach.

摘要

多年来,人们一直认为蛋白质的序列能够决定其三维结构。然而,在解释序列如何决定其折叠方式方面进展有限,而且对于任何超过100个残基的蛋白质,不使用特定结构数据进行计算来做到这一点的尝试从未成功过。我们描述了一种方法,该方法仅使用不包含任何序列同源性元素的基本原理,就能预测长达近200个残基的复杂折叠。该方法不模拟折叠链,而是基于理想化的结构表示生成数千个模型。对每个粗略模型进行评分,并对最佳模型进行优化。在一组五个蛋白质上,正确的折叠得分很高,并且在一组更大的蛋白质上进行测试时,对于一些超过150个残基的蛋白质,正确的折叠排名最高,其他的则是相近的拓扑变体。所有其他达到这种成功水平的方法都依赖于使用已知结构的模板或片段。我们的方法独特之处在于使用基于一般堆积规则的理想模型数据库,从本质上讲,更接近从头开始的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验