Suppr超能文献

从逆协方差预测蛋白质结构域边界。

Prediction of protein domain boundaries from inverse covariances.

机构信息

MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.

出版信息

Proteins. 2013 Feb;81(2):253-60. doi: 10.1002/prot.24181. Epub 2012 Oct 16.

Abstract

It has been known even since relatively few structures had been solved that longer protein chains often contain multiple domains, which may fold separately and play the role of reusable functional modules found in many contexts. In many structural biology tasks, in particular structure prediction, it is of great use to be able to identify domains within the structure and analyze these regions separately. However, when using sequence data alone this task has proven exceptionally difficult, with relatively little improvement over the naive method of choosing boundaries based on size distributions of observed domains. The recent significant improvement in contact prediction provides a new source of information for domain prediction. We test several methods for using this information including a kernel smoothing-based approach and methods based on building alpha-carbon models and compare performance with a length-based predictor, a homology search method and four published sequence-based predictors: DOMCUT, DomPRO, DLP-SVM, and SCOOBY-DOmain. We show that the kernel-smoothing method is significantly better than the other ab initio predictors when both single-domain and multidomain targets are considered and is not significantly different to the homology-based method. Considering only multidomain targets the kernel-smoothing method outperforms all of the published methods except DLP-SVM. The kernel smoothing method therefore represents a potentially useful improvement to ab initio domain prediction.

摘要

即使在解决的结构相对较少的情况下,人们也已经知道,较长的蛋白质链通常包含多个结构域,这些结构域可能会分别折叠,并在许多情况下充当可重复使用的功能模块。在许多结构生物学任务中,特别是在结构预测中,能够在结构中识别结构域并分别分析这些区域是非常有用的。然而,仅使用序列数据时,这项任务就变得非常困难,与根据观察到的结构域的大小分布选择边界的简单方法相比,几乎没有什么改进。最近接触预测的显著改进为结构域预测提供了新的信息来源。我们测试了几种利用这些信息的方法,包括基于核平滑的方法和基于构建α-碳模型的方法,并将性能与基于长度的预测器、同源搜索方法以及四个已发布的基于序列的预测器进行了比较:DOMCUT、DomPRO、DLP-SVM 和 SCOOBY-DOmain。我们表明,在考虑单结构域和多结构域目标时,核平滑方法明显优于其他从头预测器,与基于同源性的方法没有显著差异。仅考虑多结构域目标时,核平滑方法的性能优于除 DLP-SVM 之外的所有已发布方法。因此,核平滑方法代表了一种对从头预测结构域可能有用的改进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daf4/3563215/e931f20781d1/prot0081-0253-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验