Suppr超能文献

使用小波估计时间感受野

Temporal receptive field estimation using wavelets.

作者信息

Saul Alan B

机构信息

Department of Ophthalmology, Medical College of Georgia, Augusta GA 30912, USA.

出版信息

J Neurosci Methods. 2008 Mar 15;168(2):450-64. doi: 10.1016/j.jneumeth.2007.11.014. Epub 2007 Nov 29.

Abstract

A standard goal of many neurophysiological investigations is to obtain enough insight into a neuron's behavior that it becomes possible to predict responses to arbitrary stimuli. Techniques have been developed to solve this system identification problem, and the numerical method presented here adds to this toolbox. Stimuli and responses, beginning as functions of time, are transformed to complex-valued functions of both time and temporal frequency, giving amplitude and phase at each frequency and time point. The transformation is implemented by wavelets. The kernel describing the system is then derived by simply dividing the response wavelet by the stimulus wavelet. The results are averaged over time, incorporating median filtering to remove artifacts. Estimated kernels match well to the actual kernels, with little data needed. Noise tolerance is excellent, and the method works on a wide range of kernels and stimulus types. The algorithm is easy to implement and understand, but can be applied broadly.

摘要

许多神经生理学研究的一个标准目标是深入了解神经元的行为,从而能够预测其对任意刺激的反应。人们已经开发出多种技术来解决这个系统识别问题,本文提出的数值方法为这一工具箱增添了新工具。刺激和反应最初是时间的函数,经变换后成为时间和时间频率的复值函数,给出每个频率和时间点的幅度和相位。这种变换通过小波来实现。然后,通过简单地将响应小波除以刺激小波来推导描述系统的核。结果随时间进行平均,并结合中值滤波以去除伪迹。估计的核与实际核匹配良好,所需数据很少。噪声耐受性极佳,该方法适用于多种核和刺激类型。该算法易于实现和理解,但应用广泛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验