Suppr超能文献

使用小波估计时间感受野

Temporal receptive field estimation using wavelets.

作者信息

Saul Alan B

机构信息

Department of Ophthalmology, Medical College of Georgia, Augusta GA 30912, USA.

出版信息

J Neurosci Methods. 2008 Mar 15;168(2):450-64. doi: 10.1016/j.jneumeth.2007.11.014. Epub 2007 Nov 29.

Abstract

A standard goal of many neurophysiological investigations is to obtain enough insight into a neuron's behavior that it becomes possible to predict responses to arbitrary stimuli. Techniques have been developed to solve this system identification problem, and the numerical method presented here adds to this toolbox. Stimuli and responses, beginning as functions of time, are transformed to complex-valued functions of both time and temporal frequency, giving amplitude and phase at each frequency and time point. The transformation is implemented by wavelets. The kernel describing the system is then derived by simply dividing the response wavelet by the stimulus wavelet. The results are averaged over time, incorporating median filtering to remove artifacts. Estimated kernels match well to the actual kernels, with little data needed. Noise tolerance is excellent, and the method works on a wide range of kernels and stimulus types. The algorithm is easy to implement and understand, but can be applied broadly.

摘要

许多神经生理学研究的一个标准目标是深入了解神经元的行为,从而能够预测其对任意刺激的反应。人们已经开发出多种技术来解决这个系统识别问题,本文提出的数值方法为这一工具箱增添了新工具。刺激和反应最初是时间的函数,经变换后成为时间和时间频率的复值函数,给出每个频率和时间点的幅度和相位。这种变换通过小波来实现。然后,通过简单地将响应小波除以刺激小波来推导描述系统的核。结果随时间进行平均,并结合中值滤波以去除伪迹。估计的核与实际核匹配良好,所需数据很少。噪声耐受性极佳,该方法适用于多种核和刺激类型。该算法易于实现和理解,但应用广泛。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验