Suppr超能文献

从自然视觉刺激中学习神经元的非线性。

Learning the nonlinearity of neurons from natural visual stimuli.

作者信息

Kayser Christoph, Körding Konrad P, König Peter

机构信息

Institute of Neuroinformatics, University / ETH Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.

出版信息

Neural Comput. 2003 Aug;15(8):1751-9. doi: 10.1162/08997660360675026.

Abstract

Learning in neural networks is usually applied to parameters related to linear kernels and keeps the nonlinearity of the model fixed. Thus, for successful models, properties and parameters of the nonlinearity have to be specified using a priori knowledge, which often is missing. Here, we investigate adapting the nonlinearity simultaneously with the linear kernel. We use natural visual stimuli for training a simple model of the visual system. Many of the neurons converge to an energy detector matching existing models of complex cells. The overall distribution of the parameter describing the nonlinearity well matches recent physiological results. Controls with randomly shuffled natural stimuli and pink noise demonstrate that the match of simulation and experimental results depends on the higher-order statistical properties of natural stimuli.

摘要

神经网络中的学习通常应用于与线性核相关的参数,并保持模型的非线性不变。因此,对于成功的模型,必须使用先验知识来指定非线性的属性和参数,而这种先验知识往往是缺失的。在此,我们研究同时调整非线性和线性核。我们使用自然视觉刺激来训练一个简单的视觉系统模型。许多神经元收敛到一个与现有复杂细胞模型相匹配的能量检测器。描述非线性的参数的整体分布与最近的生理学结果非常匹配。使用随机打乱的自然刺激和粉红噪声进行的对照实验表明,模拟结果与实验结果的匹配取决于自然刺激的高阶统计特性。

相似文献

1
Learning the nonlinearity of neurons from natural visual stimuli.
Neural Comput. 2003 Aug;15(8):1751-9. doi: 10.1162/08997660360675026.
3
Processing of complex stimuli and natural scenes in the visual cortex.
Curr Opin Neurobiol. 2004 Aug;14(4):468-73. doi: 10.1016/j.conb.2004.06.002.
4
Complex cell pooling and the statistics of natural images.
Network. 2007 Jun;18(2):81-100. doi: 10.1080/09548980701418942.
6
Learning transform invariant object recognition in the visual system with multiple stimuli present during training.
Neural Netw. 2008 Sep;21(7):888-903. doi: 10.1016/j.neunet.2007.11.004. Epub 2008 Apr 8.
8
Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli.
Neuron. 2008 May 22;58(4):625-38. doi: 10.1016/j.neuron.2008.03.011.
9
The dynamics of visual responses in the primary visual cortex.
Prog Brain Res. 2007;165:21-32. doi: 10.1016/S0079-6123(06)65003-6.
10
A simple cell model with dominating opponent inhibition for robust image processing.
Neural Netw. 2004 Jun-Jul;17(5-6):647-62. doi: 10.1016/j.neunet.2004.04.002.

引用本文的文献

1
Slowness and sparseness have diverging effects on complex cell learning.
PLoS Comput Biol. 2014 Mar 6;10(3):e1003468. doi: 10.1371/journal.pcbi.1003468. eCollection 2014 Mar.
2
Emergence of visual saliency from natural scenes via context-mediated probability distributions coding.
PLoS One. 2010 Dec 29;5(12):e15796. doi: 10.1371/journal.pone.0015796.
3
A model of the ventral visual system based on temporal stability and local memory.
PLoS Biol. 2006 May;4(5):e120. doi: 10.1371/journal.pbio.0040120. Epub 2006 Apr 18.
4
Cortical sensitivity to visual features in natural scenes.
PLoS Biol. 2005 Oct;3(10):e342. doi: 10.1371/journal.pbio.0030342. Epub 2005 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验