Suppr超能文献

双扇在信号网络中多种调控基序背景下的功能。

Functions of bifans in context of multiple regulatory motifs in signaling networks.

作者信息

Lipshtat Azi, Purushothaman Sudarshan P, Iyengar Ravi, Ma'ayan Avi

机构信息

Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA.

出版信息

Biophys J. 2008 Apr 1;94(7):2566-79. doi: 10.1529/biophysj.107.116673. Epub 2008 Jan 4.

Abstract

Representation of intracellular signaling networks as directed graphs allows for the identification of regulatory motifs. Regulatory motifs are groups of nodes with the same connectivity structure, capable of processing information. The bifan motif, made of two source nodes directly crossregulating two target nodes, is an overrepresented motif in a mammalian cell signaling network and in transcriptional networks. One example of a bifan is the two MAP-kinases, p38, and JNK that phosphorylate and activate the two transcription factors ATF2 and Elk-1. We have used a system of coupled ordinary differential equations to analyze the regulatory capability of this bifan motif by itself, and when it interacts with other motifs such as positive and negative feedback loops. Our results indicate that bifans provide temporal regulation of signal propagation and act as signal sorters, filters, and synchronizers. Bifans that have OR gate configurations show rapid responses whereas AND gate bifans can introduce delays and allow prolongation of signal outputs. Bifans that have AND gates can filter noisy signal inputs. The p38/JNK-ATF2/Elk-1bifan synchronizes the output of activated transcription factors. Synchronization is a robust property of bifans and is exhibited even when the bifan is adjacent to a positive feedback loop. The presence of the bifan promotes the transcription and translation of the dual specificity protein phosphatase MKP-1 that inhibits p38 and JNK thus enabling a negative feedback loop. These results indicate that bifan motifs in cell signaling networks can contribute to signal processing capability both intrinsically and by enabling the functions of other regulatory motifs.

摘要

将细胞内信号网络表示为有向图有助于识别调控基序。调控基序是具有相同连接结构、能够处理信息的节点组。双扇形基序由两个直接相互交叉调节两个靶节点的源节点组成,是哺乳动物细胞信号网络和转录网络中过度呈现的基序。双扇形基序的一个例子是两种丝裂原活化蛋白激酶p38和JNK,它们磷酸化并激活两种转录因子ATF2和Elk-1。我们使用了一个耦合常微分方程组系统来单独分析这种双扇形基序的调控能力,以及当它与其他基序(如正反馈和负反馈环)相互作用时的调控能力。我们的结果表明,双扇形基序提供信号传播的时间调控,并充当信号分选器、过滤器和同步器。具有或门配置的双扇形基序显示出快速响应,而与门双扇形基序会引入延迟并延长信号输出。具有与门的双扇形基序可以过滤噪声信号输入。p38/JNK-ATF2/Elk-1双扇形基序使活化转录因子的输出同步。同步是双扇形基序的一个稳健特性,即使双扇形基序与正反馈环相邻时也会表现出来。双扇形基序的存在促进了双特异性蛋白磷酸酶MKP-1的转录和翻译,MKP-1抑制p38和JNK,从而形成一个负反馈环。这些结果表明,细胞信号网络中的双扇形基序既能内在地促进信号处理能力,又能通过实现其他调控基序的功能来促进信号处理能力。

相似文献

1
Functions of bifans in context of multiple regulatory motifs in signaling networks.
Biophys J. 2008 Apr 1;94(7):2566-79. doi: 10.1529/biophysj.107.116673. Epub 2008 Jan 4.
3
Boolean dynamics of biological networks with multiple coupled feedback loops.
Biophys J. 2007 Apr 15;92(8):2975-81. doi: 10.1529/biophysj.106.097097. Epub 2007 Jan 26.
4
The effect of negative feedback loops on the dynamics of boolean networks.
Biophys J. 2008 Jul;95(2):518-26. doi: 10.1529/biophysj.107.125021. Epub 2008 Mar 28.
5
Mapping network motif tunability and robustness in the design of synthetic signaling circuits.
PLoS One. 2014 Mar 18;9(3):e91743. doi: 10.1371/journal.pone.0091743. eCollection 2014.
7
Current innovations and future challenges of network motif detection.
Brief Bioinform. 2015 May;16(3):497-525. doi: 10.1093/bib/bbu021. Epub 2014 Jun 24.
8
Coherent coupling of feedback loops: a design principle of cell signaling networks.
Bioinformatics. 2008 Sep 1;24(17):1926-32. doi: 10.1093/bioinformatics/btn337. Epub 2008 Jul 2.
9
Serially regulated biological networks fully realise a constrained set of functions.
IET Syst Biol. 2008 Sep;2(5):313-22. doi: 10.1049/iet-syb:20080097.
10
Estimating parameters in genetic regulatory networks with SUM logic.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1371-4. doi: 10.1109/IEMBS.2011.6090207.

引用本文的文献

1
From single-neuron dynamics to higher-order circuit motifs in control and pathological brain networks.
J Physiol. 2023 Aug;601(15):3011-3024. doi: 10.1113/JP282749. Epub 2022 Jul 22.
2
Biological Prescience: The Role of Anticipation in Organismal Processes.
Front Physiol. 2021 Dec 17;12:672457. doi: 10.3389/fphys.2021.672457. eCollection 2021.
3
A Bifan Motif Shaped by ArsR1, ArsR2, and Their Cognate Promoters Frames Arsenic Tolerance of .
Front Microbiol. 2021 Mar 12;12:641440. doi: 10.3389/fmicb.2021.641440. eCollection 2021.
5
Signaling networks: information flow, computation, and decision making.
Cold Spring Harb Perspect Biol. 2015 Apr 1;7(4):a005934. doi: 10.1101/cshperspect.a005934.
6
Introduction to network analysis in systems biology.
Sci Signal. 2011 Sep 6;4(190):tr5. doi: 10.1126/scisignal.2001965.
7
Analysis of operating principles with S-system models.
Math Biosci. 2011 May;231(1):49-60. doi: 10.1016/j.mbs.2011.03.001. Epub 2011 Mar 4.
9
Specification of spatial relationships in directed graphs of cell signaling networks.
Ann N Y Acad Sci. 2009 Mar;1158:44-56. doi: 10.1111/j.1749-6632.2008.03748.x.
10
Network integration and graph analysis in mammalian molecular systems biology.
IET Syst Biol. 2008 Sep;2(5):206-21. doi: 10.1049/iet-syb:20070075.

本文引用的文献

1
Network motifs: theory and experimental approaches.
Nat Rev Genet. 2007 Jun;8(6):450-61. doi: 10.1038/nrg2102.
3
Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation.
J Theor Biol. 2007 Jan 7;244(1):68-76. doi: 10.1016/j.jtbi.2006.05.013. Epub 2006 May 23.
4
Topology of resultant networks shaped by evolutionary pressure.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 1):061912. doi: 10.1103/PhysRevE.73.061912. Epub 2006 Jun 19.
5
From components to regulatory motifs in signalling networks.
Brief Funct Genomic Proteomic. 2006 Mar;5(1):57-61. doi: 10.1093/bfgp/ell004. Epub 2006 Feb 20.
6
A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli.
Mol Syst Biol. 2005;1:2005.0006. doi: 10.1038/msb4100010. Epub 2005 Mar 29.
7
Genetic toggle switch without cooperative binding.
Phys Rev Lett. 2006 May 12;96(18):188101. doi: 10.1103/PhysRevLett.96.188101. Epub 2006 May 8.
8
Regulatory dynamics of synthetic gene networks with positive feedback.
J Mol Biol. 2006 Jun 16;359(4):1107-24. doi: 10.1016/j.jmb.2006.03.064. Epub 2006 Apr 27.
9
The expanding cosmos of nuclear receptor coactivators.
Cell. 2006 May 5;125(3):411-4. doi: 10.1016/j.cell.2006.04.021.
10
Network motifs: structure does not determine function.
BMC Genomics. 2006 May 5;7:108. doi: 10.1186/1471-2164-7-108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验