Suppr超能文献

细胞信号网络有向图中空间关系的规范。

Specification of spatial relationships in directed graphs of cell signaling networks.

作者信息

Lipshtat Azi, Neves Susana R, Iyengar Ravi

机构信息

Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA.

出版信息

Ann N Y Acad Sci. 2009 Mar;1158:44-56. doi: 10.1111/j.1749-6632.2008.03748.x.

Abstract

Graph theory provides a useful and powerful tool for the analysis of cellular signaling networks. Intracellular components such as cytoplasmic signaling proteins, transcription factors, and genes are connected by links, representing various types of chemical interactions that result in functional consequences. However, these graphs lack important information regarding the spatial distribution of cellular components. The ability of two cellular components to interact depends not only on their mutual chemical affinity but also on colocalization to the same subcellular region. Localization of components is often used as a regulatory mechanism to achieve specific effects in response to different receptor signals. Here we describe an approach for incorporating spatial distribution into graphs and for the development of mixed graphs where links are specified by mutual chemical affinity as well as colocalization. We suggest that such mixed graphs will provide more accurate descriptions of functional cellular networks and their regulatory capabilities and aid in the development of large-scale predictive models of cellular behavior.

摘要

图论为细胞信号网络的分析提供了一个有用且强大的工具。细胞内成分,如细胞质信号蛋白、转录因子和基因,通过连接相互关联,这些连接代表了导致功能后果的各种化学相互作用类型。然而,这些图缺乏有关细胞成分空间分布的重要信息。两个细胞成分相互作用的能力不仅取决于它们相互的化学亲和力,还取决于它们在同一亚细胞区域的共定位。成分的定位通常被用作一种调节机制,以响应不同的受体信号而实现特定的效应。在这里我们描述了一种将空间分布纳入图中并开发混合图的方法,其中连接由相互的化学亲和力以及共定位来指定。我们认为,这种混合图将更准确地描述功能性细胞网络及其调节能力,并有助于开发细胞行为的大规模预测模型。

相似文献

1
Specification of spatial relationships in directed graphs of cell signaling networks.
Ann N Y Acad Sci. 2009 Mar;1158:44-56. doi: 10.1111/j.1749-6632.2008.03748.x.
2
A methodology for the structural and functional analysis of signaling and regulatory networks.
BMC Bioinformatics. 2006 Feb 7;7:56. doi: 10.1186/1471-2105-7-56.
3
Unraveling protein networks with power graph analysis.
PLoS Comput Biol. 2008 Jul 11;4(7):e1000108. doi: 10.1371/journal.pcbi.1000108.
4
Computing paths and cycles in biological interaction graphs.
BMC Bioinformatics. 2009 Jun 15;10:181. doi: 10.1186/1471-2105-10-181.
5
Markov clustering versus affinity propagation for the partitioning of protein interaction graphs.
BMC Bioinformatics. 2009 Mar 30;10:99. doi: 10.1186/1471-2105-10-99.
6
Extending the Applicability of Graphlets to Directed Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2017 Nov-Dec;14(6):1302-1315. doi: 10.1109/TCBB.2016.2586046. Epub 2016 Jun 28.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
Reconstruction of cellular signalling networks and analysis of their properties.
Nat Rev Mol Cell Biol. 2005 Feb;6(2):99-111. doi: 10.1038/nrm1570.
9
Bioinformatics and cellular signaling.
Curr Opin Biotechnol. 2004 Feb;15(1):78-81. doi: 10.1016/j.copbio.2004.01.003.
10
Deduction of intracellular sub-systems from a topological description of the network.
Mol Biosyst. 2007 Aug;3(8):523-9. doi: 10.1039/b702142a. Epub 2007 Jun 27.

引用本文的文献

1
Regulation of ERK-MAPK signaling in human epidermis.
BMC Syst Biol. 2015 Jul 25;9:41. doi: 10.1186/s12918-015-0187-6.
2
Network reconstruction based on proteomic data and prior knowledge of protein connectivity using graph theory.
PLoS One. 2015 May 28;10(5):e0128411. doi: 10.1371/journal.pone.0128411. eCollection 2015.
3
Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins.
Neurotox Res. 2011 May;19(4):603-27. doi: 10.1007/s12640-010-9208-9. Epub 2010 Jul 20.

本文引用的文献

1
Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth.
Science. 2008 May 16;320(5878):903-9. doi: 10.1126/science.1152662.
3
Functions of bifans in context of multiple regulatory motifs in signaling networks.
Biophys J. 2008 Apr 1;94(7):2566-79. doi: 10.1529/biophysj.107.116673. Epub 2008 Jan 4.
6
The where's and when's of kinase anchoring.
Trends Biochem Sci. 2006 Jun;31(6):316-23. doi: 10.1016/j.tibs.2006.04.009. Epub 2006 May 11.
7
Formation of regulatory patterns during signal propagation in a Mammalian cellular network.
Science. 2005 Aug 12;309(5737):1078-83. doi: 10.1126/science.1108876.
9
Biological networks: the tinkerer as an engineer.
Science. 2003 Sep 26;301(5641):1866-7. doi: 10.1126/science.1089072.
10
Network motifs: simple building blocks of complex networks.
Science. 2002 Oct 25;298(5594):824-7. doi: 10.1126/science.298.5594.824.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验