Maier Kerstin C, Godfrey Jamie E, Echeverri Christophe J, Cheong Frances K Y, Schroer Trina A
Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
Traffic. 2008 Apr;9(4):481-91. doi: 10.1111/j.1600-0854.2008.00702.x. Epub 2008 Jan 7.
Dynactin is a highly conserved, multiprotein complex that works in conjunction with microtubule-based motors to power a variety of intracellular motile events. Dynamitin (p50) is a core element of dynactin structure. In the present study, we use targeted mutagenesis to evaluate how dynamitin's different structural domains contribute to its ability to self-associate, interact with dynactin and assemble into a complex with its close binding partner, p24. We show that these interactions involve three distinct structural elements: (i) a previously unidentified dimerization motif in the N-terminal 100 amino acids, (ii) an alpha-helical motif spanning aa 106-162 and (iii) the C-terminal half of the molecule (aa 213-406), which is predicted to fold into an antiparallel alpha-helix bundle. The N-terminal half of dynamitin by itself is sufficient to disrupt dynactin, although very high concentrations are required. The ability of mutations in dynamitin's interaction domains to disrupt dynactin in vitro was found to correlate with their inhibitory effects when expressed in cells. We determined that the dynactin subunit, p24, governs dynamitin oligomerization by binding dynamitin along its length. This suppresses aberrant multimerization and drives formation of a protein complex that is identical to the native dynactin shoulder.
动力蛋白激活蛋白是一种高度保守的多蛋白复合体,它与基于微管的马达协同作用,为各种细胞内运动事件提供动力。动力蛋白抑制蛋白(p50)是动力蛋白激活蛋白结构的核心元件。在本研究中,我们使用靶向诱变来评估动力蛋白抑制蛋白的不同结构域如何有助于其自缔合能力、与动力蛋白激活蛋白相互作用以及与其紧密结合伴侣p24组装成复合物。我们表明,这些相互作用涉及三个不同的结构元件:(i)N端100个氨基酸中一个先前未鉴定的二聚化基序,(ii)跨越第106 - 162位氨基酸的α螺旋基序,以及(iii)分子的C端一半(第213 - 406位氨基酸),预计其折叠成一个反平行α螺旋束。动力蛋白抑制蛋白的N端一半本身就足以破坏动力蛋白激活蛋白,尽管需要非常高的浓度。发现动力蛋白抑制蛋白相互作用结构域中的突变在体外破坏动力蛋白激活蛋白的能力与其在细胞中表达时的抑制作用相关。我们确定动力蛋白激活蛋白亚基p24通过沿其长度结合动力蛋白抑制蛋白来控制动力蛋白抑制蛋白的寡聚化。这抑制了异常的多聚化,并驱动形成一种与天然动力蛋白激活蛋白肩部相同的蛋白质复合物。