Suppr超能文献

神经元线粒体超氧化物的差异产生

Differential production of superoxide by neuronal mitochondria.

作者信息

Hoegger Mark J, Lieven Christopher J, Levin Leonard A

机构信息

Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, USA.

出版信息

BMC Neurosci. 2008 Jan 8;9:4. doi: 10.1186/1471-2202-9-4.

Abstract

BACKGROUND

Mitochondrial DNA (mtDNA) mutations, which are present in all mitochondria-containing cells, paradoxically cause tissue-specific disease. For example, Leber's hereditary optic neuropathy (LHON) results from one of three point mutations mtDNA coding for complex I components, but is only manifested in retinal ganglion cells (RGCs), a central neuron contained within the retina. Given that RGCs use superoxide for intracellular signaling after axotomy, and that LHON mutations increase superoxide levels in non-RGC transmitochondrial cybrids, we hypothesized that RGCs regulate superoxide levels differently than other neuronal cells. To study this, we compared superoxide production and mitochondrial electron transport chain (METC) components in isolated RGC mitochondria to mitochondria isolated from cerebral cortex and neuroblastoma SK-N-AS cells.

RESULTS

In the presence of the complex I substrate glutamate/malate or the complex II substrate succinate, the rate of superoxide production in RGC-5 cells was significantly lower than cerebral or neuroblastoma cells. Cerebral but not RGC-5 or neuroblastoma cells increased superoxide production in response to the complex I inhibitor rotenone, while neuroblastoma but not cerebral or RGC-5 cells dramatically decreased superoxide production in response to the complex III inhibitor antimycin A. Immunoblotting and real-time quantitative PCR of METC components demonstrated different patterns of expression among the three different sources of neuronal mitochondria.

CONCLUSION

RGC-5 mitochondria produce superoxide at significantly lower rates than cerebral and neuroblastoma mitochondria, most likely as a result of differential expression of complex I components. Diversity in METC component expression and function could explain tissue specificity in diseases associated with inherited mtDNA abnormalities.

摘要

背景

线粒体DNA(mtDNA)突变存在于所有含线粒体的细胞中,但却会引发组织特异性疾病。例如,Leber遗传性视神经病变(LHON)是由编码复合体I组分的mtDNA的三个点突变之一引起的,但仅在视网膜神经节细胞(RGCs)中表现出来,RGCs是视网膜内的一种中枢神经元。鉴于RGCs在轴突切断后利用超氧化物进行细胞内信号传导,并且LHON突变会增加非RGC转线粒体杂交细胞中的超氧化物水平,我们推测RGCs调节超氧化物水平的方式与其他神经元细胞不同。为了研究这一点,我们将分离的RGC线粒体中的超氧化物产生和线粒体电子传递链(METC)组分与从大脑皮层和神经母细胞瘤SK-N-AS细胞中分离的线粒体进行了比较。

结果

在存在复合体I底物谷氨酸/苹果酸或复合体II底物琥珀酸的情况下,RGC-5细胞中的超氧化物产生速率显著低于大脑或神经母细胞瘤细胞。大脑细胞而非RGC-5或神经母细胞瘤细胞在复合体I抑制剂鱼藤酮作用下超氧化物产生增加,而神经母细胞瘤细胞而非大脑或RGC-5细胞在复合体III抑制剂抗霉素A作用下超氧化物产生显著降低。对METC组分的免疫印迹和实时定量PCR显示,三种不同来源的神经元线粒体之间存在不同的表达模式。

结论

RGC-5线粒体产生超氧化物的速率明显低于大脑和神经母细胞瘤线粒体,这很可能是复合体I组分差异表达的结果。METC组分表达和功能的多样性可以解释与遗传性mtDNA异常相关疾病中的组织特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验