Dacks Joel B, Poon Pak P, Field Mark C
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):588-93. doi: 10.1073/pnas.0707318105. Epub 2008 Jan 8.
The process by which some eukaryotic organelles, for example the endomembrane system, evolved without endosymbiotic input remains poorly understood. This problem largely arises because many major cellular systems predate the last common eukaryotic ancestor (LCEA) and thus do not provide examples of organellogenesis in progress. A model is emerging whereby gene duplication and divergence of multiple "specificity-" or "identity-" encoding proteins for the various endomembranous organelles produced the diversity of nonendosymbiotically derived cellular compartments present in modern eukaryotes. To address this possibility, we analyzed three molecular components of the endocytic membrane-trafficking machinery. Phylogenetic analyses of the endocytic syntaxins, Rab 5, and the beta-adaptins each reveal a pattern of ancestral, undifferentiated endocytic homologues in the LCEA. Subsequently, these undifferentiated progenitors independently duplicated in widely divergent lineages, convergently producing components with similar endocytic roles, e.g., beta1 and beta2-adaptin. In contrast, beta3, beta4, and all other adaptin complex subunits, as well as paralogues of the syntaxins and Rabs specific for the other membrane-trafficking organelles, all evolved before the LCEA. Thus, the process giving rise to the differentiated organelles of the endocytic system appears to have been interrupted by the major speciation event that produced the extant eukaryotic lineages. These results suggest that although many endocytic components evolved before the LCEA, other major features evolved independently and convergently after diversification into the primary eukaryotic supergroups. This finding provides an example of a basic cellular system that was simpler in the LCEA than in many extant eukaryotes and yields insight into nonendosymbiotic organelle evolution.
一些真核细胞器,如内膜系统,在没有内共生输入的情况下进化的过程仍然知之甚少。这个问题很大程度上是因为许多主要的细胞系统早于最后一个共同的真核祖先(LCEA),因此没有提供正在进行的细胞器发生的例子。一种模型正在出现,即多种内膜细胞器的“特异性”或“身份”编码蛋白的基因复制和分化产生了现代真核生物中存在的非内共生来源的细胞区室的多样性。为了探究这种可能性,我们分析了内吞膜运输机制的三个分子成分。对内吞 syntaxin、Rab 5 和β-衔接蛋白的系统发育分析各自揭示了 LCEA 中祖先的、未分化的内吞同源物的模式。随后,这些未分化的祖细胞在广泛不同的谱系中独立复制,趋同地产生具有相似内吞作用的成分,例如β1 和β2-衔接蛋白。相比之下,β3、β4 和所有其他衔接蛋白复合体亚基,以及其他膜运输细胞器特有的 syntaxin 和 Rab 的旁系同源物,都在 LCEA 之前进化。因此,产生内吞系统分化细胞器的过程似乎被产生现存真核谱系的主要物种形成事件打断了。这些结果表明,尽管许多内吞成分在 LCEA 之前就已经进化,但其他主要特征在分化成主要的真核超群之后独立且趋同地进化。这一发现提供了一个基本细胞系统的例子,该系统在 LCEA 中比在许多现存真核生物中更简单,并有助于深入了解非内共生细胞器的进化。