Andersson Magnus, Vincent Jonathan, van der Spoel David, Davidsson Jan, Neutze Richard
Department of Chemical and Biological Engineering, Molecular Biotechnology, Chalmers University of Technology, Göteborg, Sweden.
Structure. 2008 Jan;16(1):21-8. doi: 10.1016/j.str.2007.10.016.
Time-resolved X-ray scattering has emerged as a powerful technique for studying the rapid structural dynamics of small molecules in solution. Membrane-protein-catalyzed transport processes frequently couple large-scale conformational changes of the transporter with local structural changes perturbing the uptake and release of the transported substrate. Using light-driven halide ion transport catalyzed by halorhodopsin as a model system, we combine molecular dynamics simulations with X-ray scattering calculations to demonstrate how small-molecule time-resolved X-ray scattering can be extended to the study of membrane transport processes. In particular, by introducing strongly scattering atoms to label specific positions within the protein and substrate, the technique of time-resolved wide-angle X-ray scattering can reveal both local and global conformational changes. This approach simultaneously enables the direct visualization of global rearrangements and substrate movement, crucial concepts that underpin the alternating access paradigm for membrane transport proteins.
时间分辨X射线散射已成为研究溶液中小分子快速结构动力学的一种强大技术。膜蛋白催化的转运过程通常将转运体的大规模构象变化与局部结构变化相耦合,这些局部结构变化会干扰被转运底物的摄取和释放。我们以盐视紫红质催化的光驱动卤离子转运作为模型系统,将分子动力学模拟与X射线散射计算相结合,以证明小分子时间分辨X射线散射如何能够扩展到膜转运过程的研究中。特别是,通过引入强散射原子来标记蛋白质和底物内的特定位置,时间分辨广角X射线散射技术能够揭示局部和全局的构象变化。这种方法同时能够直接观察到全局重排和底物运动,而这些关键概念是膜转运蛋白交替访问模式的基础。