Suppr超能文献

鱼类嗅觉的流体动力学方面。

Hydrodynamic aspects of fish olfaction.

作者信息

Cox Jonathan P L

机构信息

Department of Chemistry, University of Bath, Bath BA2 7AY, UK.

出版信息

J R Soc Interface. 2008 Jun 6;5(23):575-93. doi: 10.1098/rsif.2007.1281.

Abstract

Flow into and around the olfactory chamber of a fish determines how odorant from the fish's immediate environment is transported to the sensory surface (olfactory epithelium) lining the chamber. Diffusion times in water are long, even over comparatively short distances (millimetres). Therefore, transport from the external environment to the olfactory epithelium must be controlled by processes that rely on convection (i.e. the bulk flow of fluid). These include the beating of cilia lining the olfactory chamber and the relatively inexpensive pumping action of accessory sacs. Flow through the chamber may also be induced by an external flow. Flow over the olfactory epithelium appears to be laminar. Odorant transfer to the olfactory epithelium may be facilitated in several ways: if the olfactory organs are mounted on stalks that penetrate the boundary layer; by the steep velocity gradients generated by beating cilia; by devices that deflect flow into the olfactory chamber; by parallel arrays of olfactory lamellae; by mechanical agitation of the chamber (or olfactory stalks); and by vortices. Overall, however, our knowledge of the hydrodynamics of fish olfaction is far from complete. Several areas of future research are outlined.

摘要

流入鱼的嗅腔及其周围的水流,决定了来自鱼周围环境的气味物质如何被输送到衬于嗅腔的感觉表面(嗅觉上皮)。即使在相对较短的距离(几毫米)内,水中的扩散时间也很长。因此,从外部环境到嗅觉上皮的输送必须由依赖对流(即流体的整体流动)的过程来控制。这些过程包括嗅腔内纤毛的摆动以及附属囊相对简单的泵吸作用。穿过嗅腔的水流也可能由外部水流诱导产生。流经嗅觉上皮的水流似乎是层流。气味物质向嗅觉上皮的转移可能通过多种方式实现:如果嗅觉器官附着在穿透边界层的柄上;通过纤毛摆动产生的陡峭速度梯度;通过使水流偏向嗅腔的装置;通过平行排列的嗅板;通过对嗅腔(或嗅觉柄)的机械搅动;以及通过漩涡。然而,总体而言,我们对鱼类嗅觉流体动力学的了解还远远不够完善。本文概述了未来几个研究领域。

相似文献

1
Hydrodynamic aspects of fish olfaction.
J R Soc Interface. 2008 Jun 6;5(23):575-93. doi: 10.1098/rsif.2007.1281.
3
Three-dimensional structure of the nasal passageway of a hagfish and its implications for olfaction.
Anat Rec (Hoboken). 2011 Jun;294(6):1045-56. doi: 10.1002/ar.21382. Epub 2011 Apr 28.
4
Motion-driven flow in an unusual piscine nasal region.
Zoology (Jena). 2016 Dec;119(6):500-510. doi: 10.1016/j.zool.2016.06.008. Epub 2016 Jul 6.
5
The functional nasal anatomy of the pike, Esox lucius L.
Comp Biochem Physiol A Mol Integr Physiol. 2020 Jun;244:110688. doi: 10.1016/j.cbpa.2020.110688. Epub 2020 Mar 22.
6
Functional nasal morphology of chimaerid fishes.
J Morphol. 2013 Sep;274(9):987-1009. doi: 10.1002/jmor.20156. Epub 2013 Apr 30.
7
Olfactory flow in the sturgeon is externally driven.
Comp Biochem Physiol A Mol Integr Physiol. 2019 Sep;235:211-225. doi: 10.1016/j.cbpa.2019.06.013. Epub 2019 Jun 21.
8
A numerical model of nasal odorant transport for the analysis of human olfaction.
J Theor Biol. 1997 Jun 7;186(3):279-301. doi: 10.1006/jtbi.1996.0347.
9
Complex flow in the nasal region of guitarfishes.
Comp Biochem Physiol A Mol Integr Physiol. 2016 Mar;193:52-63. doi: 10.1016/j.cbpa.2015.12.007. Epub 2016 Jan 15.
10
Olfaction in fish.
Prog Neurobiol. 1975;5(4):271-335. doi: 10.1016/0301-0082(75)90014-3.

引用本文的文献

1
Paired and solitary ionocytes in the zebrafish olfactory epithelium.
Chem Senses. 2025 Jan 22;50. doi: 10.1093/chemse/bjaf031.
2
Paired and solitary ionocytes in the zebrafish olfactory epithelium.
bioRxiv. 2025 Jul 1:2024.11.08.620918. doi: 10.1101/2024.11.08.620918.
3
Ultramicroscopic organization of the exterior olfactory organ in in relation to its spawning migration.
Open Vet J. 2024 Jan;14(1):512-524. doi: 10.5455/OVJ.2024.v14.i1.46. Epub 2024 Jan 31.
4
Lacustrine speciation associated with chromosomal inversion in a lineage of riverine fishes.
Evolution. 2023 Jun 29;77(7):1505-1521. doi: 10.1093/evolut/qpad067.
8
Sniffing out Stingray Noses: The Functional Morphology of Batoid Olfaction.
Integr Org Biol. 2022 Oct 10;4(1):obac043. doi: 10.1093/iob/obac043. eCollection 2022.
9
Coevolution of the olfactory organ and its receptor repertoire in ray-finned fishes.
BMC Biol. 2022 Sep 1;20(1):195. doi: 10.1186/s12915-022-01397-x.

本文引用的文献

2
Three-Dimensional X-ray Microtomography.
Science. 1987 Sep 18;237(4821):1439-44. doi: 10.1126/science.237.4821.1439.
3
Interfacial Organisms: Passive Ventilation in the Velocity Gradients near Surfaces.
Science. 1972 Jan 14;175(4018):210-1. doi: 10.1126/science.175.4018.210.
4
The functional organization of the fish olfactory system.
Prog Neurobiol. 2007 Jun;82(2):80-6. doi: 10.1016/j.pneurobio.2007.02.007. Epub 2007 Mar 4.
5
MRI of tarantulas: morphological and perfusion imaging.
Magn Reson Imaging. 2007 Jan;25(1):129-35. doi: 10.1016/j.mri.2006.08.019. Epub 2006 Nov 14.
6
Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity.
Chem Senses. 2007 Mar;32(3):215-23. doi: 10.1093/chemse/bjl047. Epub 2007 Jan 13.
8
Beyond the olfactory bulb: an odotopic map in the forebrain.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18688-93. doi: 10.1073/pnas.0505241102. Epub 2005 Dec 7.
9
The odorant receptor repertoire of teleost fish.
BMC Genomics. 2005 Dec 6;6:173. doi: 10.1186/1471-2164-6-173.
10
Living in a physical world.
J Biosci. 2004 Dec;29(4):391-7. doi: 10.1007/BF02712110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验