Anderson Peter R, Kirby Kim, Orr William C, Hilliker Arthur J, Phillips John P
Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):611-6. doi: 10.1073/pnas.0709691105. Epub 2008 Jan 9.
Friedreich's ataxia (FRDA) is a neurodegenerative disorder arising from a deficit of the mitochondrial iron chaperone, frataxin. Evidence primarily from yeast and mammalian cells is consistent with the hypothesis that a toxic hydroxyl radical generated from hydrogen peroxide (H2O2) via iron-catalyzed Fenton chemistry at least partially underlies the pathology associated with this disease. However, no whole-organism studies have been presented that directly test this hypothesis. We recently developed a Drosophila model that recapitulates the principal hallmarks of FRDA [Anderson PR, Kirby K, Hilliker A, Phillips JP (2005) Hum Mol Genet 14:3397-3405]. Using the Drosophila FRDA model, we now report that ectopic expression of enzymes that scavenge H2O2 suppresses the deleterious phenotypes associated with frataxin deficiency. In contrast, genetic augmentation with enzymes that scavenge superoxide is without effect. Augmentation of endogenous catalase restores the activity of the reactive oxygen species (ROS)-sensitive mitochondrial enzyme, aconitase and enhances resistance to H2O2 exposure, both of which are diminished by frataxin deficiency. Collectively, these data argue that H2O2 is an important pathogenic substrate underlying the phenotypes arising from frataxin deficiency in Drosophila and that interventions that reduce this specific ROS can effectively ameliorate these phenotypes. The therapeutic implications of these findings are clear and we believe warrant immediate clinical investigation.
弗里德赖希共济失调(FRDA)是一种由线粒体铁伴侣蛋白——酵母辅酶A合成酶缺乏引起的神经退行性疾病。主要来自酵母和哺乳动物细胞的证据与以下假设一致:过氧化氢(H2O2)通过铁催化的芬顿化学反应产生的有毒羟基自由基至少部分是该疾病相关病理的基础。然而,目前尚未有直接验证这一假设的全生物体研究。我们最近开发了一种果蝇模型,该模型概括了FRDA的主要特征[安德森PR,柯比K,希利克A,菲利普斯JP(2005年)《人类分子遗传学》14:3397 - 3405]。利用果蝇FRDA模型,我们现在报告,清除H2O2的酶的异位表达可抑制与酵母辅酶A合成酶缺乏相关的有害表型。相比之下,用清除超氧化物的酶进行基因增强则没有效果。内源性过氧化氢酶的增强恢复了活性氧(ROS)敏感的线粒体酶——乌头酸酶的活性,并增强了对H2O2暴露的抗性,而这两者在酵母辅酶A合成酶缺乏时都会降低。总体而言,这些数据表明,H2O2是果蝇中酵母辅酶A合成酶缺乏所产生表型的重要致病底物,并且减少这种特定ROS的干预措施可以有效改善这些表型。这些发现的治疗意义显而易见,我们认为值得立即进行临床研究。